Non-Parallel Receptivity and the Adjoint PSE

  • Christophe Airiau
  • Steeve Walther
  • Alessandro Bottaro
Conference paper
Part of the IUTAM Symposia book series (IUTAM)

Abstract

The receptivity of the Blasius boundary layer is studied by an adjoint formulation of the Parabolized Stability Equations (PSE). Focus is on the response of the flow to forcing at the wall (i.e. roughness, vibrations, blowing and suction), to forcing at some position within the flow domain, and on the scattering of an acoustic wave onto a hump. It is shown that acting on the flow with a source of streamwise momentum and at the wall with fluid injection and suction produces large responses. The flow sensitivity results are keys to an effective control of the instability.

Keyword

Receptivity boundary layer Parabolized Stability Equations adjoints. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Airiau C. and Casalis G. Linear stability of a boundary layer by a parabolic system of equations. La Recherche Aérospatiale, 5 (1993) 57.MathSciNetGoogle Scholar
  2. 2.
    Bertolotti F.P., Herbert T. and Spalart P.R. Linear and non linear stability of the Blasius boundary layer. J. Fluid Mech., 242 (1992) 441MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Crouch, J. D. Localized receptivity of boundary layers. Phys. Fluids A, 4 (1992) 1408.Google Scholar
  4. 4.
    Hill, D.C. Adjoint system and their role in the receptivity problem for boundary layers. J. Fluid Mech., 292 (1995) 183.MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Hill D.C. Receptivity in non-parallel boundary layers. FEDSM97–3108, ASME Fluids Engineering Division Summer Meeting (1997)Google Scholar
  6. 6.
    Joslin, R.D. Aircraft laminar flow control. Annu. Rev. Fluid Mech., 30 (1998) 1.ADSCrossRefGoogle Scholar
  7. 7.
    Luchini P. and Bottaro A. Görtler vortices: A backward-in-time approach to the receptivity problem. J. Fluid Mech., 363 (1998) 1.MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Saric, W. S. Physical description of boundary-layer transition: experimental evidence. AGARD report R 793 (1993).Google Scholar
  9. 9.
    Tumin A.M. and Fedorov A.V. Instability wave excitation by a localized vibrator in the boundary layer. J. Appl. Mech. Tech. Phys., 25 (1984) 867.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Christophe Airiau
    • 1
  • Steeve Walther
    • 1
  • Alessandro Bottaro
    • 1
  1. 1.Institut de Mécanique des Fluides de ToulouseUniversité Paul SabatierToulouseFrance

Personalised recommendations