Investigation of Transition to Turbulence in a 3D Supersonic Boundary Layer

  • Christian Mielke
  • Leonhard Kleiser
Conference paper
Part of the IUTAM Symposia book series (IUTAM)

Abstract

The laminar-turbulent transition process in a three-dimensional supersonic boundary-layer flow over a flat plate is investigated by means of direct numerical simulation using the temporal model. A stationary crossflow vortex and 3D random noise are superimposed onto the laminar base flow. Initially the cross-flow vortex grows and reaches a saturation level. Then secondary instability modes start growing until strongly nonlinear interactions set in. The final breakdown to turbulence is characterized first by the breakdown of the crossflow vortex and finally the decay of the secondary vortical structures into new smaller structures.

Key Words

cross-flow instability 3D supersonic boundary layer transition to turbulence direct numerical simulation vortical structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Adams and L. Kleiser. Subharmonic transition to turbulence in a flat-plate boundary layer at Mach number 4.5. J. Fluid Mech., 317: 301–335, 1996.ADSMATHCrossRefGoogle Scholar
  2. 2.
    H. Bippes and T. Lerche. Transition prediction in three-dimensional boundary layer flow unstable to crossflow instability. AIAA Paper 97–1906, 1997.Google Scholar
  3. 3.
    L. N. Cattafesta, V. Iyer, J. A. Masad, R. A. King, and J. R. Dagenhart. Three-dimensional boundary-layer transition on a swept wing at Mach 3.5. AIAA Journal, 33 (11): 2032–2037, 1995.ADSCrossRefGoogle Scholar
  4. 4.
    V. Iyer, R. E. Spa11, and J. R. Dagenhart. Computational study of transition-front on a swept wing leading-edge model. J. of Aircraft, 31 (1): 72–78, 1994.CrossRefGoogle Scholar
  5. 5.
    J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid Mech., 285: 69–94, 1995.MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Y. Kohama, T. Onodera, and Y. Egami Design and control of crossflow instability field. In P. W. Duck and P. Hall, editors, IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, volume 17–26, pages 147–156. Kluwer Academic Publishers, 1996.Google Scholar
  7. 7.
    Ch. Mielke. Numerische Untersuchungen zur Turbulenzentstehung in dreidimensionalen kompressiblen Grenzschichtströmungen. PhD thesis, ETH Zürich, Institute of Fluid Dynamics, 1999.Google Scholar
  8. 8.
    Ch. Mielke and L. Kleiser. Investigation of the late stages of transition to turbulence in a Mach 4.5 boundary layer. In R. Friedrich and P. Bountoux, editors, Computation and Visualization of Three—Dimensional vortical and Turbulent Flows, volume 64 of Notes on Numerical Fluid Mechanics, pages 242–260. Vieweg Verlag, 1998.Google Scholar
  9. 9.
    W. Müller, H. Bestek, and H. Fasel. Nonlinear development of travelling waves in a three-dimensional boundary layer. In P. W. Duck and P. Hall, editors, IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, volume 17–26, pages 217–226. Kluwer Academic Publishers, 1996.Google Scholar
  10. 10.
    C. D. Pruett, C.-L. Chang, and C. L. Streett. Simulation of crossflow instability on a supersonic highly swept wing. Technical report, NASA-CR-198267, 1995.Google Scholar
  11. 11.
    R.H. Radeztsky, M. S. Reibert, and M.S. W.S. Saric. Development of Stationary Crossflow Vortices on a Swept Wing. AIAA Journal, 94–2373, 1994.Google Scholar
  12. 12.
    T. Wintergerste and L. Kleiser. Breakdown of a crossflow vortex in a three-dimensional boundary layer. In P. Voke, L. Kleiser, and C. Chollet, editors, Proc. of “2nd ERCOFTAC Workshop on Direct and Large Eddy Simulation, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Christian Mielke
    • 1
  • Leonhard Kleiser
    • 1
  1. 1.Institute of Fluid DynamicsETH ZürichZürichSwitzerland

Personalised recommendations