Advertisement

On the Growth of Waves in Boundary Layers: a simple Approximate Solution

  • M. Gaster
Conference paper
Part of the IUTAM Symposia book series (IUTAM)

Abstract

The behaviour of instability waves in boundary layers is considered when the mean flow differs only slightly from a parallel flow. A solution for the instability is sought in the form of a scaled solution of the local parallel flow mode. The scaling is chosen to minimise the deviation of the solution from the full linearised equations of motion. By re-arranging the terms in the governing equation a modified Orr-Sommerfeld equation is formed to define the base solution and this then enables the scaling function to be reduced to a simple integral conservation relation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Tollmien (1931) NACA Tech. Memo. No. 609.Google Scholar
  2. [2]
    H. Schlichting (1933) Zur Enststehung der Turbulenz. 1. Mitteilung, Nachr. Ges. Wiss. Gottingen, Math. Phys. Klasse 182.Google Scholar
  3. [3]
    J. Pretsch (1941) Die Stabilitat einer ebenen Laminarstromung bei Druckgefalle und Druckansteig. Jb. d. dt. Luftfarhrtforschung, 158.Google Scholar
  4. [4]
    G.B. Schubauer & H.K. Skramstad (1943) Laminar boundary layer oscillations and stability of laminar flow. National Bureau of Standards Research Paper 1772.Google Scholar
  5. [5]
    M.D.J. Barry & M.A.S. Ross (1970) J. Fluid Mech, 43, 813.ADSMATHCrossRefGoogle Scholar
  6. [6]
    M. Gaster (1974) J. Fluid Mech., 66, 465–480.ADSMATHCrossRefGoogle Scholar
  7. [7]
    M. Bouthier (1972) J. de Mecanique 11, 599.Google Scholar
  8. [8]
    M. Bouthier (1973) J. de Mecanique 12, 75.Google Scholar
  9. [9]
    F.T. Smith (1979) Proc. Roy. Soc. A, 366, 91–109.ADSMATHCrossRefGoogle Scholar
  10. [10]
    W.S. Saric & A.H. Nayfeh (1977) ‘Non-parallel stability of boundary layers with pressure gradients and suction’. AGARD CP No 224, paper 6.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • M. Gaster
    • 1
  1. 1.Department of Engineering, Queen Mary & Westfield CollegeUniversity of LondonLondonUK

Personalised recommendations