Turbulent Energy Production Mechanism in General Boundary Layer Transition

  • Y. P. Kohama
  • P. H. Alfredsson
  • Y. Egami
  • M. Kawakami
Conference paper
Part of the IUTAM Symposia book series (IUTAM)

Summary

Most of the laminar boundary layers encountered in industrial use experience rather high turbulence intensity oncoming flow, or are largely modified into three-dimensional(3D) structure by external forces, and transition process becomes different from that of two-dimensional boundary layer(2D) with low turbulence intensity back ground. Such transition processes have been called as “Bypass transition”, and “3D boundary layer transition”.

Present investigation is focused on the clarification of the complicated transition mechanism in such general boundary layers. Through systematic investigation using several different kinds of experimental models, it became to clear that streamwise vortex as the primary instability, and then local inflectional instability as the secondary instability start to appear. Therefore, it can be said that the consistent transition mechanism which is important not only in academic interest, but also in industrial application is the generation of streamwise vortex (steady) as the primary instability, and then locally appeared wave(unsteady) instability as the secondary inflectional instability. Appearance of this secondary instability can be said as the key event for the turbulent energy production in general.

Key Words

Transition mechanism Three-dimensional boundary layer By-pass transition Break down Turbulent energy Inflectional instability Drag reduction LFC Three dimensional boundary layer Transition Turbulence Aircraft Control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    Alfredsson, P. H., Matsubara, M.: Transitional Boundary Layers in Aeronautics, R. A. W. M. Henkes and J. L. van Ingen Ed., Elsiever Science, (1996), 374–386.Google Scholar
  2. [2]
    Matsubara, M., Alfredsson, P.H., Westin, K. J. Y: Proc. ASME Turbo Expo. (1998).Google Scholar
  3. [3]
    Kawakami, M., Kohama, Y., Okutsu, M.: AIAA 99–0811.Google Scholar
  4. [4]
    Kohama, Y., Davis, S.: ASME, FED-114 (1991), 109–114.Google Scholar
  5. [5]
    Kobayashi, R., Kohama, Y, Takamadate C.: Acta Mech. 35 (1980), 71–82.ADSMATHCrossRefGoogle Scholar
  6. [6]
    Bippes, H., Goertler, H.: Acta Mech. 14 (1972), 251–262.CrossRefGoogle Scholar
  7. [7]
    Kohama, Y., Saric, W. S., Hoos, J. A.: Proc. Boundary Layer Transition and Control, Cambridge, (1991), 41–413.Google Scholar
  8. [8]
    Bippes, H., Mueller, B., Wagner, M.: Phys. Fluids, 3 (1991), 2371–2377.ADSCrossRefGoogle Scholar
  9. [9]
    Kohama, Y.: Proc. Third Asian Congress of Fluid Mechanics, (1986), 162–165.Google Scholar
  10. [10]
    Lingwood, R. J.: J. Fluid Mech. 314 (1996), 373–405.ADSCrossRefGoogle Scholar
  11. [11]
    Kohama, Y, Egami, Y: AIAA 99–0921.Google Scholar
  12. [12]
    Kohama, Y. P., Wang, T. J.: Recent Advances in Experimental Fluid Mechanics, (1991), 343–348.Google Scholar
  13. [13]
    Kohama, Y, Kodashima, Y, Watanabe, H.: Laminar Turbulent Transition, R. Kobayashi Eds., Springer-Verlag, (1994), 455–462.Google Scholar
  14. [14]
    Klebanoff, P. S., Tidstrom, K. D.: NASATN D-105(1959).Google Scholar
  15. [15]
    Kohama, Y.; PhysicoChemical Hydrodynamics, 9 (1987), 209–218.ADSGoogle Scholar
  16. [16]
    Reed, H. L., Saric, W. S.: Ann. Rev. Fluid Mech. 21 (1989), 235–284.MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    Klein, S. J., Reynolds, W. C., Schraub, F. A., Runstadler, P. W.: J. Fluid Mech., 30 (1967), 741–773.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Y. P. Kohama
    • 1
  • P. H. Alfredsson
    • 2
  • Y. Egami
    • 3
  • M. Kawakami
    • 4
  1. 1.Institute of Fluid ScienceTohoku Univ.Japan
  2. 2.Dept. of MechanicsKTHSweden
  3. 3.National Space Lab.Japan
  4. 4.Toyota Central R&D Labs., Inc.Japan

Personalised recommendations