Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 324))

Abstract

A common feature of the contact processes and voter models that are treated in Parts I and II is that only one coordinate of the configuration changes at each time. One consequence of this property is that these processes tend to have only a few invariant measures — typically there are one or two trivial ones, and then with a substantial amount of work, one can often prove the existence of a nontrivial invariant measure. The reason for this scarcity of invariant measures is that the process has no conserved quantity, i.e., a quantity that does not change with time. The existence of a conserved quantity tends to break up the state space {0, 1}S into classes determined by the value of this quantity, and then there tends to be an invariant measure for each of its possible values. This corresponds roughly to the difference between irreducible and reducible Markov chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • F. J. Alexander, Z. Cheng, S. A. Janowsky and J. L. Lebowitz, Shock fluctuations in the two-dimensional asymmetric exclusion process, J. Statist. Phys. 68 (1992), 761–785.

    MathSciNet  MATH  Google Scholar 

  • E. D. Andjel, Convergence to a nonextremal equilibrium measure in the exclusion process, Probab. Th. Rel. Fields 73 (1986), 127–134.

    MathSciNet  MATH  Google Scholar 

  • E. D. Andjel, A correlation inequality for the symmetric exclusion process, Ann. Probab. 16 (1988), 717–721.

    MathSciNet  MATH  Google Scholar 

  • E. D. Andjel, Finite exclusion process and independent random walks, Unpublished paper.

    Google Scholar 

  • E. D. Andjel, M. D. Bramson and T. M. Liggett, Shocks in the asymmetric exclusion process, Probab. Th. Rel. Fields 78 (1988), 231–247.

    MathSciNet  MATH  Google Scholar 

  • E. D. Andjel and C. P. Kipnis, Pointwise ergodic theorems for the symmetric exclusion process, Probab. Theory and Rel. Fields 75 (1987), 545–550.

    MathSciNet  MATH  Google Scholar 

  • E. D. Andjel and M. E. Vares, Hydrodynamic equations for attractive particle systems on Z, J. Statist. Phys. 47 (1987), 265–288.

    MathSciNet  MATH  Google Scholar 

  • R. Arratia, Symmetric exclusion processes: a comparison inequality and a large deviation result, Ann. Probab. 13 (1985), 53–61.

    MathSciNet  MATH  Google Scholar 

  • D. Arora, D. P. Bhatia and M. A. Prasad, Survival probability in one dimension for the A + BB reaction with hard-core repulsion, J. Statist. Phys. 84 (1996), 697–711.

    MathSciNet  MATH  Google Scholar 

  • A. Asselah and P. Dai Pra, Sharp estimates for the occurrence times of rare events for symmetric simple exclusion, Stoch. Proc. Appl. 71 (1997), 259–273.

    MathSciNet  MATH  Google Scholar 

  • C. Bahadoran, Hydrodynamical limit for spatially heterogeneous simple exclusion processes,Probab. Th. Rel. Fields 110 (1998), 287–331.

    MathSciNet  MATH  Google Scholar 

  • A. Benassi and J. P. Fouque, Hydrodynamical limit for the asymmetric exclusion process, Ann. Probab. 15 (1987), 546–560.

    MathSciNet  MATH  Google Scholar 

  • A. Benassi and J. P. Fouque, Fluctuation field for the asymmetric simple exclusion process, Random Partial Differential Equations, Birkhäuser, 1991, pp. 33–43.

    Google Scholar 

  • A. Benassi, J. P. Fouque, E. Saada and M. E. Vares, Asymmetric attractive systems on Z: hydrodynamic limit for monotone initial profiles, J. Statist. Phys. 63 (1991), 719–735.

    MathSciNet  Google Scholar 

  • I. Benjamini, P. A. Ferrari and C. Landim, Asymmetric conservative processes with random rates, Stoch. Proc. Appl. 61 (1996), 181–204.

    MathSciNet  MATH  Google Scholar 

  • L. Bertini and G. Giacomin, Stochastic Burger’s equation and KPZ equations from particle systems, Comm. Math. Phys. 183 (1997), 571–607.

    MathSciNet  MATH  Google Scholar 

  • C. Boldrighini, G. Cosini, S. Frigio and M. Grasso Nunes, Computer simulation of shock waves in the completely asymmetric simple exclusion process, J. Statist. Phys. 55 (1989), 611–623.

    MathSciNet  Google Scholar 

  • M. Bramson, Front propagation in certain one dimensional exclusion models, J. Statist. Phys. 51 (1988), 863–870.

    MathSciNet  MATH  Google Scholar 

  • M. Bramson, P. Calderoni, A. De Masi, P. Ferrari, J. Lebowitz and R. H. Schonmann, Microscopic selection principle for diffusion-reaction equations, J. Statist. Phys. 45 (1986), 56–70.

    Google Scholar 

  • S. Brassesco, E. Presutti, V. Sidoravicius and M. E. Vares, Ergodicity and exponential convergence of a Glauber+Kawasaki process, Trans. Amer. Math. Soc. (1999).

    Google Scholar 

  • S. Brassesco, E. Presutti, V. Sidoravicius and M. E. Vares, Ergodicity of a Glauber+Kawasaki process with metastable states, 2000.

    Google Scholar 

  • C. Cammarotta and P. A. Ferrari, An invariance principle for the edge of the branching exclusion process, Stoch. Proc. Appl. 38 (1991), 1–11.

    Google Scholar 

  • N. Cancrini and A. Galves, Approach to equilibrium in the symmetric simple exclusion process, Markov Proc. Rel. Fields 1 (1995), 175–184.

    MathSciNet  MATH  Google Scholar 

  • C. C. Chang, Equilibrium fluctuations of nongradient reversible particle systems, Nonlinear Stochastic PDEs, Springer, 1994, pp. 41–51.

    Google Scholar 

  • A. De Masi and P. A. Ferrari, Self diffusion in one dimensional lattice gasses in the presence of an external field, J. Statist. Phys. 38 (1985), 603–613.

    MathSciNet  MATH  Google Scholar 

  • A. De Masi, P. A. Ferrari and J. L. Lebowitz, Reaction-diffusion equations for interacting particle systems, J. Stat. Phys. 44 (1986), 589–644.

    MATH  Google Scholar 

  • A. De Masi, P. A. Ferrari and M. E. Vares, A microscopic model of interface related to the Burgers equation, J. Statist. Phys. 55 (1989), 601–609.

    MathSciNet  MATH  Google Scholar 

  • A. De Masi, C. Kipnis, E. Presutti and E. Saada, Microscopic structure at the shock in the asymmetric simple exclusion, Stoch. and Stoch. Reports 27 (1989), 151–165.

    MATH  Google Scholar 

  • A. De Masi, E. Presutti and E. Scacciatelli, The weakly asymmetric simple exclusion process, Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), 1–38.

    MATH  Google Scholar 

  • B. Derrida, Systems out of equilibrium: some exactly soluble models, Stat Phys 19, World Sci., 1996, pp. 243–253.

    Google Scholar 

  • B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Statist. Phys. 69 (1992), 667–687.

    MathSciNet  MATH  Google Scholar 

  • B. Derrida and M. R. Evans, The asymmetric exclusion model: exact results through a matrix approach, Nonequilibrium Statistical Mechanics in One Dimension (V. Privman, ed.), Cambridge U. Press, 1997, pp. 277–304.

    Google Scholar 

  • B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, Exact solution of a ID asymmetric exclusion model using a matrix formulation, J. Phys. A 26 (1993a), 1493–1517.

    MathSciNet  MATH  Google Scholar 

  • B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, A matrix method of solving an asymmetric exclusion model with open boundaries, Cellular Automata and Cooperative Systems (N. Boccara, E. Goles, S. Martinez and P. Picco, ed.), Kluwer, 1993b, pp. 121–133.

    Google Scholar 

  • B. Derrida, M. R. Evans and K. Mallick, Exact diffusion constant of a one-dimensional asymmetric exclusion model with open boundaries, J. Statist. Phys. 79 (1995), 833–874.

    MathSciNet  MATH  Google Scholar 

  • B. Derrida, M. R. Evans and D. Mukamel, Exact diffusion constant for one-dimensional asymmetric exclusion models, J. Phys. A 26 (1993), 4911–4918.

    MathSciNet  Google Scholar 

  • B. Derrida, S. Goldstein, J. L. Lebowitz and E. R. Speer, Shift equivalence of measures and the intrinsic structure of shocks in the asymmetric simple exclusion process, J. Statist. Phys. 93 (1998), 547–571.

    MathSciNet  MATH  Google Scholar 

  • B. Derrida, S. A. Janowsky, J. L. Lebowitz and E. R. Speer, Exact solution of the totally asymmetric simple exclusion process: shock profiles, J. Statist. Phys. 73 (1993a), 813–842.

    MathSciNet  MATH  Google Scholar 

  • B. Derrida, S. A. Janowsky, J. L. Lebowitz and E. R. Speer, Microscopic-shock profiles: exact solution of a nonequilibrium system, Europhys. Lett. 22 (1993b), 651–656.

    MathSciNet  Google Scholar 

  • B. Derrida and J. L. Lebowitz, Exact large deviation function in the asymmetric exclusion process, Phys. Rev. Lett. 80 (1998), 209–213.

    MathSciNet  MATH  Google Scholar 

  • B. Derrida, J. L. Lebowitz and E. R. Speer, Shock profiles for the asymmetric simple exclusion process in one dimension, J. Statist. Phys. 89 (1997), 135–167.

    MathSciNet  MATH  Google Scholar 

  • B. Derrida and K. Mallick, Exact diffusion constant for the one-dimensional partially asymmetric exclusion model, J. Phys. A 30 (1997), 1031–1046.

    MathSciNet  MATH  Google Scholar 

  • P. Dittrich, Travelling waves and long-time behaviour of the weakly asymmetric exclusion process, Probab. Th. Rel. Fields 86 (1990), 443–455.

    MathSciNet  MATH  Google Scholar 

  • P. Dittrich, Long-time behavior of the weakly asymmetric exclusion process and the Burgers equation without viscosity, Math. Nachr. 155 (1992), 279–287.

    MathSciNet  MATH  Google Scholar 

  • P. Dittrich and J. Gärtner, A central limit theorem for the weakly asymmetric simple exclusion process, Math. Nachr. 151 (1991), 75–93.

    MathSciNet  MATH  Google Scholar 

  • R. Esposito, R. Marra and H.-T. Yau, Diffusive limit of asymmetric simple exclusion, Rev. Math. Phys. 6 (1994), 1233–1267.

    MathSciNet  MATH  Google Scholar 

  • P. A. Ferrari, The simple exclusion process as seen from a tagged particle, Ann. Probab. 14 (1986), 1277–1290.

    MathSciNet  MATH  Google Scholar 

  • P. A. Ferrari, Microscopic shocks in one-dimensional driven systems, Ann. Inst. H. Poincaré Phys. Théor. 55 (1991), 637–655.

    MATH  Google Scholar 

  • P. A. Ferrari, Shock fluctuations in the asymmetric simple exclusion, Probab. Th. Rel. Fields 91 (1992a), 81–101.

    MATH  Google Scholar 

  • P. A. Ferrari, Shocks in the Burgers equation and the asymmetric simple exclusion process, Automata, Networks, Dynamical Systems and Statistical Physics, Kluwer, 1992b, pp. 25–64.

    Google Scholar 

  • P. A. Ferrari, Shocks in one-dimensional processes with drift, Probability and Phase Transition, Kluwer, 1994, pp. 35–48.

    Google Scholar 

  • P. A. Ferrari, Limit theorems for tagged particles, Markov Proc. Rel. Fields 2 (1996), 17–40.

    MATH  Google Scholar 

  • P. A. Ferrari and L. R. G. Fontes, Shocks in asymmetric one-dimensional simple exclusion processes, Resenhas IME-USP 1 (1993), 57–68.

    MathSciNet  MATH  Google Scholar 

  • P. A. Ferrari and L. R. G. Fontes, Shock fluctuations in asymmetric simple exclusion process, Probab. Th. Rel. Fields 99 (1994a), 305–319.

    MathSciNet  MATH  Google Scholar 

  • P. A. Ferrari and L. R. G. Fontes, Current fluctuations in asymmetric simple exclusion process, Ann. Probab. 22 (1994b), 820–832.

    MathSciNet  MATH  Google Scholar 

  • P. A. Ferrari and L. R. G. Fontes, Poissonian approximation for the tagged particle in asymmetric simple exclusion, J. Appl. Probab. 33 (1996), 411–419.

    MathSciNet  MATH  Google Scholar 

  • P. A. Ferrari, L. R. G. Fontes and Y. Kohayakawa, Invariant measures for a two species asymmetric process, J. Statist. Phys. (1994), 1153–1178.

    Google Scholar 

  • P. A. Ferrari, A. Galves and T. M. Liggett, Exponential waiting time for filling a large interval in the symmetric simple exclusion process, Ann. Inst. Henri Poincaré 31 (1995), 155–175.

    MathSciNet  MATH  Google Scholar 

  • P. A. Ferrari and S. Goldstein, Microscopic stationary states for stochastic systems with particle flux, Probab. Th. Rel. Fields 78 (1988), 455–471.

    MathSciNet  MATH  Google Scholar 

  • P. A. Ferrari, S. Goldstein and J. L. Lebowitz, Diffusion, mobility and the Einstein relation, Statistical Physics and Dynamical Systems, Rigorous Results, Birkhauser, 1985, pp. 405–442.

    Google Scholar 

  • P. A. Ferrari and C. Kipnis, Second class particles in the rarefaction fan, Ann. Inst. H. Poincaré Probab. Statist. 31 (1995), 143–154.

    MathSciNet  MATH  Google Scholar 

  • P. A. Ferrari, C. Kipnis and E. Saada, Microscopic structure of travelling waves in the asymmetric simple exclusion process, Ann. Probab. 19 (1991), 226–244.

    MathSciNet  MATH  Google Scholar 

  • P. A. Ferrari, E. Presutti, E. Scacciatelli and M. E. Vares, The symmetric simple exclusion process I: Probability estimates, Stoch. Proc. Appl. 39 (1991a), 89–105.

    MathSciNet  MATH  Google Scholar 

  • P. A. Ferrari, E. Presutti, E. Scacciatelli and M. E. Vares, The symmetric simple exclusion process II: Applications, Stoch. Proc. Appl. 39 (1991b), 107–115.

    MathSciNet  MATH  Google Scholar 

  • J. A. Fill, Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process, Ann. Appl. Probab. 1 (1991), 62–87.

    MathSciNet  MATH  Google Scholar 

  • J. P. Fouque, Hydrodynamical behavior of asymmetric attractive particle systems. One example: One-dimensional nearest-neighbors asymmetric simple exclusion process, Proceedings of the 1989 AMS Seminar on Random Media, vol. 27, AMS Lectures in Applied Mathematics, 1991, pp. 97–107.

    Google Scholar 

  • J. P. Fouque and E. Saada, Totally asymmetric attractive particle systems on Z: hydrody-namic limit for general initial profiles, Stoch. Proc. Appl. 51 (1994), 9–23.

    MathSciNet  MATH  Google Scholar 

  • T. Funaki, K. Handa and K. Uchiyama, Hydrodynamic limit of one-dimensional exclusion processes with speed change, Ann. Probab. 19 (1991), 245–265.

    MathSciNet  MATH  Google Scholar 

  • J. Gärtner, Convergence towards Burgers — equation and propagation of chaos for weakly asymmetric exclusion processes, Stoch. Proc. Appl. 27 (1988), 233–260.

    MATH  Google Scholar 

  • J. Gärtner and E. Presutti, Shock fluctuations in a particle system, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), 1–14.

    MATH  Google Scholar 

  • A. Greven, Symmetric exclusion on random sets and a related problem for random walks in random environment, Prob. Th. Rel. Fields 85 (1990), 307–364.

    MathSciNet  MATH  Google Scholar 

  • H. Guiol, Un résultat pour le processus d’exclusion à longue portée, Ann. Inst. Henri Poincaré 33 (1997), 387–405.

    MathSciNet  MATH  Google Scholar 

  • L.-H. Gwa and H. Spohn, Bethe solution for the dynamic-scaling exponent of the noisy Burgers equation, Phys. Rev. A 46 (1992), 844–854.

    Google Scholar 

  • S. A. Janowski, Exact solution of the totally asymmetric exclusion process: shock profiles, Rebrape 8 (1994), 85–91.

    MathSciNet  MATH  Google Scholar 

  • S. A. Janowski and J. L. Lebowitz, Finite size effects and shock fluctuations in the asymmetric simple exclusion process, Phys. Rev. A 45 (1992), 618–625.

    Google Scholar 

  • S. A. Janowski and J. L. Lebowitz, Exact results for the asymmetric simple exclusion process with a blockage, J. Statist. Phys. 77 (1994), 35–51.

    MathSciNet  Google Scholar 

  • J. D. Keisling, Convergence speed for simple symmetric exclusion: An explicit calculation, J. Statist. Phys 90 (1998), 1003–1013.

    MathSciNet  MATH  Google Scholar 

  • J. D. Keisling, An ergodic theorem for the symmetric generalized exclusion process, Markov Proc. Rel. Fields 4 (1998), 351–379.

    MathSciNet  MATH  Google Scholar 

  • C. Kipnis, Recent results on the movement of a tagged particle in simple exclusion, Particle Systems, Random Media, and Large Deviations (R. Durrett, ed.), vol. 41, AMS Contemporary Mathematics, 1985, pp. 259–265.

    Google Scholar 

  • C. Kipnis, Central limit theorem for infinite series of queues and applications to simple exclusion, Ann. Probab. 14 (1986), 397–408.

    MathSciNet  MATH  Google Scholar 

  • C. Kipnis, Fluctuations des temps d’occupation d’un site dans l’exclusion simple symetrique, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), 21–35.

    MathSciNet  MATH  Google Scholar 

  • C. Kipnis, C. Landim and S. Olla, Hydrodynamical limit for a nongradient system: The generalized symmetric exclusion process, Comm. Pure Appl. Math 47 (1994), 1475–1545.

    MathSciNet  MATH  Google Scholar 

  • C. Kipnis, C. Landim and S. Olla, Macroscopic properties of a stationary non-equilibrium distribution for a non-gradient interacting particle system, Ann. Inst. H. Poincaré Probab. Statist. 31 (1995), 191–221.

    MathSciNet  MATH  Google Scholar 

  • C. Kipnis, S. Olla, and S. R. S. Varadhan, Hydrodynamics and large deviations for simple exclusion processes, Comm. Pure Appl. Math 42 (1989), 115–137.

    MathSciNet  MATH  Google Scholar 

  • C. Kipnis and S. R. S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys. 104 (1986), 1–19.

    MathSciNet  MATH  Google Scholar 

  • K. Komoriya, Hydrodynamic limit for asymmetric mean zero exclusion processes with speed change, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), 767–797.

    MathSciNet  MATH  Google Scholar 

  • J. Krug and P. A. Ferrari, Phase transitions in driven diffusive systems with random rates, J. Phys. A 29 (1996), L465–L471.

    Google Scholar 

  • C. Landim, Hydrodynamical equation for attractive particle systems on Z d, Ann. Probab. 19 (1991), 1537–1558.

    MathSciNet  MATH  Google Scholar 

  • C. Landim, Occupation time large deviations for the symmetric simple exclusion process, Ann. Probab. 20 (1992), 206–231.

    MathSciNet  MATH  Google Scholar 

  • C. Landim, S. Olla and S. B. Volchan, Driven tracer particle and Einstein relation in one-dimensional symmetric simple exclusion process, Resenhas 3 (1997), 173–209.

    MathSciNet  MATH  Google Scholar 

  • C. Landim, S. Olla and S. B. Volchan, Driven tracer particle in one-dimensional symmetric simple exclusion process, Comm. Math. Phys. 192 (1998), 287–307.

    MathSciNet  MATH  Google Scholar 

  • C. Landim, S. Olla and H.-T. Yau, Some properties of the diffusion coefficient for asymmetric simple exclusion processes, Ann. Probab. 24 (1996), 1779–1808.

    MathSciNet  MATH  Google Scholar 

  • C. Landim, S. Olla and H. T. Yau, First order correction for the hydrodynamic limit of asymmetric simple exclusion processes in dimension d ≥ 3, Comm. Pure Appl. Math. 50 (1997), 149–203.

    MathSciNet  Google Scholar 

  • C. Landim and M. E. Vares, Equilibrium fluctuations for exclusion processes with speed change, Stoch. Proc. Appl. 52 (1994), 107–118.

    MathSciNet  MATH  Google Scholar 

  • C. Landim and H.-T. Yau, Fluctuation-dissipation equation of asymmetric simple exclusion processes, Probab. Th. Rel. Fields 108 (1997), 321–356.

    MathSciNet  MATH  Google Scholar 

  • T. M. Liggett, Ergodic theorems for the asymmetric simple exclusion process, Trans. Amer. Math. Soc. 213 (1975), 237–261.

    MathSciNet  MATH  Google Scholar 

  • T. M. Liggett, Coupling the simple exclusion process, Ann. Probab. 4 (1976), 339–356.

    MathSciNet  MATH  Google Scholar 

  • T. M. Liggett, Ergodic theorems for the asymmetric simple exclusion process II, Ann. Probab. 4 (1977), 339–356.

    MathSciNet  Google Scholar 

  • T. M. Liggett, Long range exclusion processes, Ann. Probab. 8 (1980), 861–889.

    MathSciNet  MATH  Google Scholar 

  • C. T. MacDonald, J. H. Gibbs and A. C. Pipkin, Kinetics of biopolymerization on nucleic acid templates, Biopolymers 6 (1968), 1–25.

    Google Scholar 

  • F. P. Machado, Branching exclusion on a strip, J. Statist. Phys. 86 (1997), 765–777.

    MathSciNet  MATH  Google Scholar 

  • C. Maes and F. Redig, Anisotropic perturbations of the simple symmetric exclusion process: long correlations, J. Phys. I 1 (1991), 669–684.

    MathSciNet  Google Scholar 

  • J. P. Marchand and P. A. Martin, Exclusion process and droplet shape, J. Statist. Phys. 44 (1986), 491–504.

    MathSciNet  Google Scholar 

  • J. P. Marchand and P. A. Martin, Errata: Exclusion process and droplet shape, J. Statist. Phys. 50 (1988), 469–471.

    MathSciNet  MATH  Google Scholar 

  • Y. Nagahata, The gradient condition for one-dimensional symmetric exclusion processes, J. Statist. Phys. 91 (1998), 587–602.

    MathSciNet  MATH  Google Scholar 

  • C. Neuhauser, One dimensional stochastic Ising model with small migration, Ann. Probab. 18 (1990), 1539–1546.

    MathSciNet  MATH  Google Scholar 

  • J. Quastel, Diffusion of color in simple exclusion process, Comm. Pure Appl. Math. 45 (1992), 623–679.

    MathSciNet  MATH  Google Scholar 

  • J. Quastel, F. Rezakhanlou and S. R. S. Varadhan, Large deviations for the symmetric simple exclusion process in dimensions d ≥ 3, Probab. Th. Rel. Fields 113 (1999), 1–84.

    MathSciNet  MATH  Google Scholar 

  • N. Rajewsky, L. Santen, A. Schadschneider and M. Schreckenberg, The asymmetric exclusion process: comparison of update procedures, J. Statist. Phys. 92 (1998), 151–194.

    MathSciNet  MATH  Google Scholar 

  • K. Ravishankar, Fluctuations from the hydrodynamical limit for the symmetric simple exclusion in Z d, Stoch. Proc. Appl. 42 (1992a), 31–37.

    MathSciNet  MATH  Google Scholar 

  • K. Ravishankar, Interface fluctuations in the two-dimensional weakly asymmetirc simple exclusion process, Stoch. Proc. Appl. 43 (1992b), 223–247.

    MathSciNet  MATH  Google Scholar 

  • F. Rezakhanlou, Hydrodynamic limit for attractive particle systems on Z d, Comm. Math. Phys. 140 (1991), 417–448.

    MathSciNet  MATH  Google Scholar 

  • F. Rezakhanlou, Evolution of tagged particles in nonreversible particle systems, Comm. Math. Phys. 165 (1994a), 1–32.

    MathSciNet  MATH  Google Scholar 

  • F. Rezakhanlou, Propagation of chaos for symmetric simple exclusion, Comm. Pure Appl. Math. 47 (1994b), 943–957.

    MathSciNet  MATH  Google Scholar 

  • F. Rezakhanlou, Microscopic structure of shocks in one conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 119–153.

    MathSciNet  MATH  Google Scholar 

  • H. Rost, Non-equilibrium behaviour of a many particle process: density profile and local equilibria, Z. Wahrsch. verw. Gebiete 58 (1981), 41–53.

    MathSciNet  MATH  Google Scholar 

  • E. Saada, A limit theorem for the position of a tagged particle in a simple exclusion process, Ann. Probab. 15 (1987), 375–381.

    MathSciNet  MATH  Google Scholar 

  • S. Sandow, Partially asymmetric exclusion process with open boundaries, Phys. Rev. E 50 (1994), 2660–2667.

    Google Scholar 

  • S. Sandow and G. M. Schütz, On U q [SU(2)]-symmetric driven diffusion, Europhys. Lett. 26 (1994), 7–12.

    MathSciNet  Google Scholar 

  • T. Sasamoto and M. Wadati, Dynamic matrix product ansatz and Bethe ansatz equation for asymmetric exclusion process with periodic boundary condition, J. Phys. Soc. Japan 66 (1997), 279–282.

    MathSciNet  MATH  Google Scholar 

  • G. M. Schütz, Generalized Bethe ansatz solution of a one dimensional asymmetric exclusion process on a ring with blockage, J. Statist. Phys. 71 (1993), 471–505.

    MathSciNet  MATH  Google Scholar 

  • G. M. Schütz, Pairwise balance and invariant measures for generalized exclusion processes, J. Phys. A 29 (1996), 837–843.

    MathSciNet  MATH  Google Scholar 

  • G. M. Schütz, Duality relations for asymmetric exclusion processes, J. Statist. Phys. 86 (1997a), 1265–1287.

    MathSciNet  MATH  Google Scholar 

  • G. M. Schütz, Exact solution of the master equation for the asymmetric exclusion process, J. Statist. Phys. 88 (1997b), 427–445.

    MathSciNet  MATH  Google Scholar 

  • G. M. Schütz and E. Domany, Phase transitions in an exactly soluble one dimensional exclusion process, J. Statist. Phys. 72 (1993), 277–296.

    MATH  Google Scholar 

  • D. Schwartz, Ergodic theorems for an infinite particle system with births and deaths, Ann. Probab. 4 (1976), 783–801.

    MATH  Google Scholar 

  • T. Seppäläinen, A scaling limit for queues in series, Ann. Appl. Probab. 7 (1997a), 855–872.

    MathSciNet  MATH  Google Scholar 

  • T. Seppäläinen, Coupling the totally asymmetric exclusion process with a moving interface, Markov Proc. Rel. Fields 4 (1998a), 593–628.

    MATH  Google Scholar 

  • T. Seppäläinen, Existence of hydrodynamics for the totally asymmetric simple K—exclusion process, Ann. Probab. 27 (1999), 361–415.

    MathSciNet  MATH  Google Scholar 

  • T. Seppäläinen and J. Krug, Hydrodynamics and platoon formation for a totally asymmetric exclusion process with particlewise disorder, J. Statist. Phys. 95 (1999).

    Google Scholar 

  • S. Sethuraman and L. Xu, A central limit theorem for reversible exclusion and zero range particle systems, Ann. Probab. 2b4 (1996), 1842–1870.

    MathSciNet  Google Scholar 

  • S. Sethuraman. S. R. S. Varadhan and H.-T. Yau, Diffusive limit of a tagged particle in asymmetric simple exclusion processes, 1999.

    Google Scholar 

  • E. R. Speer, The two species totally asymmetric simple exclusion process, Micro, Meso and Macroscopic Approaches in Physics (M. Fannes, C. Maes and A. Verbeure, ed.), Plenum, 1994, pp. 91–102.

    Google Scholar 

  • E. R. Speer, Finite-dimensional representations of a shock algebra, J. Statist. Phys. 89 (1997), 169–175.

    MathSciNet  MATH  Google Scholar 

  • R. Srinivasan, Queues in series via interacting particle systems, Math. Oper. Res. 18 (1993), 39–50.

    MathSciNet  MATH  Google Scholar 

  • T. Strobel, The Burgers equation as hydrodynamic limit of the exclusion process with boundary condition, Stoch. Stoch. Rep. 58 (1996), 139–189.

    MathSciNet  MATH  Google Scholar 

  • S. R. S. Varadhan, Entropy methods in hydrodynamic scaling, Proceedings of the International Congress of Mathematicians, Birkhauser, 1994a, pp. 196–208.

    Google Scholar 

  • S. R. S. Varadhan, Regularity of self-dijfusion coefficient, The Dynkin Festschrift (M. I. Freidlin, ed.), Birkhauser, 1994b, pp. 387–397.

    Google Scholar 

  • S. R. S. Varadhan, Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion, Ann. Inst. Henri Poincaré 31 (1995), 273–285.

    MathSciNet  MATH  Google Scholar 

  • S. R. S. Varadhan, The complex story of simple exclusion, Ito’s Stochastic Calculus and Probability Theory, Springer, 1996, pp. 385–400.

    Google Scholar 

  • D. Wick, A dynamical phase transition in an infinite particle system, J. Statist. Phys. 38 (1985), 1015–1025.

    MathSciNet  MATH  Google Scholar 

  • H. Yaguchi, Entropy analysis of a nearest-neighbor attractive/repulsive exclusion process on one-dimensional lattices, Ann. Probab. 18 (1990), 556–580.

    MathSciNet  MATH  Google Scholar 

  • H.-T. Yau, Logarithmic Sobolev inequality for generalized simple exclusion processes, Probab. Th. Rel. Fields 109 (1997), 507–539.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liggett, T.M. (1999). Exclusion Processes. In: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der mathematischen Wissenschaften, vol 324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03990-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03990-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08529-1

  • Online ISBN: 978-3-662-03990-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics