Hit-or-miss and Skeletons

  • Pierre Soille


Hit-or-miss transformations involve SEs composed of two sets: the first has to fit the object under study while the second has to miss it. Hence, the name fitand-miss would have been more appropriate. Hit-or-miss transformations are applied to binary images for extracting neighbourhood configurations such as those corresponding to isolated background and foreground pixels. Adding all pixels having a given configuration to an image leads to the definition of thickenings and subtracting them from the image defines the thinning operator.


Binary Image Medial Axis Grey Scale Image Background Pixel Foreground Pixel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes and references

  1. Arcelli, C. & Sanniti di Baja, G. (1989), ‘A one pass two-operation process to detect the skeletal pixels on the 4-distance transform’, IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (4), 411–414.CrossRefGoogle Scholar
  2. Banon, G. & Barrera, J. (1991), ‘Minimal representation for translation-invariant set mappings by mathematical morphology’, SIAM J. Appl. Math. 51, 1782–1798.MathSciNetMATHCrossRefGoogle Scholar
  3. Beucher, S. (1981), Ligne de partage des eaux: comment l’expliquer en termes de transformation fonctionnelle ?, Technical Report N-699, Ecole des Mines de Paris.Google Scholar
  4. Beucher, S. (1990), Segmentation d’images et morphologie mathématique, PhD thesis, Ecole des Mines de Paris.Google Scholar
  5. Beucher, S. (1994), ‘Digital skeletons in Euclidean and geodesic spaces’, Signal Processing 38 (1), 127–141.MATHCrossRefGoogle Scholar
  6. Bloomberg, D. & Maragos, P. (1990), Generalized hit-miss operations, in P. Gader, ed., ‘Image Algebra and Morphological Image Processing’, Vol. SPIE-1350, pp. 116–128.CrossRefGoogle Scholar
  7. Blum, H. (1967), A transformation for extracting new descriptors of shape, in W. Wathen-Dunn, ed., ‘Models for the Perception of Speech and Visual Form’, M.I.T. Press, Cambridge, MA, pp. 362–380.Google Scholar
  8. Blum, H. (1973), ‘Biological shape and visual science (part 1)’, Journal of Theoretical Biology 38, 205–287.CrossRefGoogle Scholar
  9. Borgefors, G., Nyström, I. & Sanniti di Baja, G. (1996), ‘Surface skeletonization of volume objects’, Lecture Notes in Computer Science 1121, 251–259.CrossRefGoogle Scholar
  10. Calabi, L. & Hartnett, W. E. (1968), ‘Shape recognition, prairie fires, convex deficiencies and skeletons’, Amer. Math. Monthly 75, 335–342.MathSciNetMATHCrossRefGoogle Scholar
  11. Crimmins, T. & Brown, W. (1985), ‘Image algebra and automatic shape recognition’, IEEE Transactions on Aerospace and Electronic Systems 21 (1), 60–69.MathSciNetCrossRefGoogle Scholar
  12. Freeman, H. (1974), ‘Computer processing of line-drawing images’, Computing sur-veys 6, 57–97.MATHCrossRefGoogle Scholar
  13. Goetcherian, V. (1980), ‘From binary to grey tone image processing using fuzzy logic concepts’, Pattern Recognition 12, 7–15.CrossRefGoogle Scholar
  14. Golay, M. (1969), ‘Hexagonal parallel pattern transformation’, IEEE Transactions on Computers 18 (8), 733–740.CrossRefGoogle Scholar
  15. Gray, S. (1971), ‘Local properties of binary images in two dimensions’, IEEE Transactions on Computers 20, 551–561.MATHCrossRefGoogle Scholar
  16. Hilditch, C. (1969), Linear skeletons form square cupboards, in B. Mertzer & D. Michie, eds, ‘Machine Intelligence’, Vol. 4, University Press, Edinburgh, pp. 403–420.Google Scholar
  17. Kresch, R. & Malah, D. (1994), Multi-parameter skeleton decomposition, in J. Serra & P. Soille, eds, ‘Mathematical morphology and its applications to image processing’, Kluwer Academic Publishers, pp. 141–148.CrossRefGoogle Scholar
  18. Lantuéjoul, C. (1978), La squelettisation et son application aux mesures topologiques des mosaïques polycristallines, PhD thesis, Ecole des Mines de Paris.Google Scholar
  19. Lantuéjoul, C. (1980), Skeletonization in quantitative metallography, in R. Haralick & J.-C. Simon, eds, ‘Issues in Digital Image Processing’, Vol. 34 of NATO ASI Series E, Sijthoff & Noordhoff, Alphen aan den Rijn, pp. 107–135.Google Scholar
  20. Lau, L., Lee, S.-W. & Suen, C. (1992), ‘Thinning methodologies: a comprehensive survey’, IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (9), 869–885.CrossRefGoogle Scholar
  21. Lobregt, S., Verbeek, P. & Groen, F. (1980), ‘Three-dimensional skeletonization: principle and algorithm’, IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (1), 75–77.CrossRefGoogle Scholar
  22. Maragos, P. & Schafer, R. (1986), ‘Morphological skeletons representation and coding of binary images’, IEEE Transactions on Acoustics, Speech and Signal Processing 34 (5), 1228–1244.CrossRefGoogle Scholar
  23. Matheron, G. (1988), Examples of topological properties of skeletons, in J. Serra, ed., ‘Image analysis and mathematical morphology. Volume 2: theoretical advances’, Academic Press, chapter 11, pp. 217–238.Google Scholar
  24. Meyer, F. (1988), Skeletons in digital spaces, in J. Serra, ed., ‘Image analysis and mathematical morphology. Volume 2: theoretical advances’, Academic Press, London, chapter 13, pp. 257–296.Google Scholar
  25. Meyer, F. (1989), ‘Skeletons and perceptual graphs’, Signal Processing 16, 335–363.MathSciNetCrossRefGoogle Scholar
  26. Meyer, F. (1990), Digital Euclidean skeletons, in M. Kunt, ed., ‘Visual Communications and Image Processing’90’, Vol. SPIE-1360, Lausanne, pp. 251–262.Google Scholar
  27. Montanari, U. (1968), ‘A method for obtaining skeletons using a quasi-Euclidean distance’, J. Assoc. Comp. Mach. 15 (4), 600–624.MathSciNetCrossRefGoogle Scholar
  28. Peleg, S. & Rosenfeld, A. (1981), ‘A min-max medial axis transform’, IEEE Transactions on Pattern Analysis and Machine Intelligence 3, 208–210.CrossRefGoogle Scholar
  29. Peyrard, R., Soille, P., Klein, J.-C. & Tuzikov, A. (1995), A dedicated hardware system for the extraction of grid patterns on stamped metal sheets, in I. Pitas, ed., ‘Froc. of 1995 IEEE Workshop on Nonlinear Signal and Image Processing’, Neos Marmaras, pp. 867–870. URL: Google Scholar
  30. Ranwez, V. & Soille, P. (1999), Order independent homotopic thinning, in G. Bertrand, M. Couprie, & L. Perroton, eds, ‘Froc. of Discrete Geometry for Computer Imagery’99’, Lecture Notes in Computer Science, Springer-Verlag.Google Scholar
  31. Ronse, C. (1988), ‘Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images’, Discrete Applied Mathematics 21, 67–79.MathSciNetMATHCrossRefGoogle Scholar
  32. Schmitt, M. (1994), One pixel thick skeletons, in J. Serra & P. Soille, eds, ‘Mathematical morphology and its applications to image processing’, Kluwer Academic Publishers, pp. 257–264.CrossRefGoogle Scholar
  33. Serra, J. (1982), Image analysis and mathematical morphology, Academic Press, London.MATHGoogle Scholar
  34. Talbot, H. & Vincent, L. (1992), Euclidean skeletons and conditional bissectors, in P. Maragos, ed., ‘Visual Communications and Image Processing’, Vol. SPIE-1818, pp. 862–876.Google Scholar
  35. Toet, A. (1990), ‘A hierarchical morphological image decomposition’, Pattern Recognition Letters 11, 267–274.MATHCrossRefGoogle Scholar
  36. Vachier, C., Meyer, F., Gratin, C. & Talbot, H. (1994), Filtrage par décomposition morphologique: application à l’extraction de structures rectilignes, in ‘Reconnaissance des Formes et Intelligence Artificielle’, GRETSI, Paris, pp. 255–263.Google Scholar
  37. Vincent, L. (1991), Efficient computation of various types of skeletons, in M. Loew, ed., ‘Medical Imaging V: Image Processing’, Vol. SPIE-1445, pp. 297–311.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Pierre Soille
    • 1
  1. 1.Silsoe Research InstituteSilsoe BedfordshireUK

Personalised recommendations