Skip to main content

Classification

  • Chapter
  • 554 Accesses

Abstract

The most commonly used abstract model for pattern recognition is the classification model. This model contains three parts: a transducer, a feature extractor, and a classifier (Duda & Hart, 1973). The transducer senses the input and converts it to a form suitable for computer processing. The feature extractor extracts presumably relevant information from the input data. The classifier uses this information to assign the input data to one of a finite number of known categories or classes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes and references

  • Amadasun, M. & King, R. (1988), ‘Low-level segmentation of multispectral images via agglomerative clustering of uniform neighbourhoods’, Pattern Recognition 21, 261–268.

    Article  Google Scholar 

  • Ball, G. & Hall, D. (1967), ‘A clustering technique for summarizing multivariate data’, Behaviorial Sciences 12, 153–155.

    Article  Google Scholar 

  • Breen, E. (1998), Morphological segmentation of non-image data —the closing function, in H. Heijmans & J. Roerdink, eds, ‘Mathematical Morphology and its Applications to Image and Signal Processing’, Vol. 12 of Computational Imaging and Vision, Kluwer Academic Publishers, Dordrecht, pp. 223–230.

    Google Scholar 

  • Cumani, A. (1991), ‘Edge detection in multispectral images’, Computer Vision, Graphics & Image Processing: Graphical Models and Image Processing 53 (1), 40–51.

    Article  MATH  Google Scholar 

  • Di Zenzo, S. (1986), ‘A note on the gradient of a multi-image’, Computer Vision, Graphics & Image Processing 33, 116–125.

    Article  MATH  Google Scholar 

  • Duda, R. & Hart, P. (1973), Pattern classification and scene analysis, John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Green, A., Berman, M., Switzer, P. & Craig, M. (1988), ‘A transformation for ordering multispectral data in terms of image quality with implications for noise removal’, IEEE Transactions on Geosciences and Remote Sensing 26(1),65–74.

    Article  Google Scholar 

  • Jarvis, R. & Patrick, E. (1973), ‘Clustering using a similarity measure based on shared near neighbors’, IEEE Transactions on Computers 22 (11), 1025–1034.

    Article  Google Scholar 

  • Khotanzad, A. & Bouarfa, A. (1990), ‘Image segmentation by a parallel, non-parametric histogram based clustering algorithm’, Pattern Recognition 23 (9), 961–973.

    Article  Google Scholar 

  • Lee, H.-C. & Cok, D. (1991), ‘Detecting boundaries in a vector field’, IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (5), 1181–1194.

    Google Scholar 

  • Panda, D. & Rosenfeld, A. (1978), ‘Image segmentation by pixel classification in (gray level, edge value) space’, IEEE Transactions on Computers 27(11), 875–879.

    Article  Google Scholar 

  • Pavlidis, T. (1978), ‘A review of algorithms for shape analysis’, Computer Graphics and Image Processing 7, 243–258.

    Article  Google Scholar 

  • Postaire, J.-G., Zhang, R. & Lecocq-Botte, C. (1993), ‘Cluster analysis by binary morphology’, IEEE Transactions on Pattern Analysis and Machine Intelligence 15 (2), 170–180.

    Article  Google Scholar 

  • Richards, J. (1993), Remote sensing digital image analysis,2nd edn, Springer-Verlag.

    Google Scholar 

  • Sarabi, A. & Aggarwal, J. (1981), ‘Segmentation of chromatic images’, Pattern Recognition 13 (6), 417–427.

    Article  Google Scholar 

  • Schürmann, J. (1996), Pattern Classification A Unified View of Statistical and Neural Approaches,John Wiley.

    Google Scholar 

  • Soille, P. (1996), ‘Morphological partitioning of multispectral images’, Journal of Electronic Imaging 5 (3), 252–265.

    Article  Google Scholar 

  • Swain, P., Vardeman, S. & Tilton, J. (1981), ‘Contextual classification of multi-spectral image data’, Pattern Recognition 13 (6), 429–441.

    Article  Google Scholar 

  • Teague, M. (1980), ‘Image analysis via the general theory of moments’, J. Opt. Soc. Am. 70 (8), 920–930.

    Article  MathSciNet  Google Scholar 

  • Watson, A. (1987), ‘A new method of classification for LANDSAT data using the watershed algorithm’, Pattern Recognition Letters pp. 15–19.

    Google Scholar 

  • Wilmet, J. (1996), Télédétection aérospatiale: méthodes et applications, SIDES, Paris.

    Google Scholar 

  • Zhang, R. & Postaire, J.-G. (1994), ‘Convexity dependent morphological transformations for mode detection in cluster analysis’, Pattern Recognition 27, 135–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soille, P. (1999). Classification. In: Morphological Image Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03939-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03939-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03941-0

  • Online ISBN: 978-3-662-03939-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics