Relations to Other Computation Models

  • Heribert Vollmer
Part of the Texts in Theoretical Computer Science An EATCS Series book series (TTCS)

Abstract

The results of the previous chapter show that there is a circuit complexity class which contains every length-respecting function f : {0,1}* → {0,1}*, computable or not:

Keywords

Sorting Prefix Univer Suffix Prool 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographic Remarks

  1. [CKS81]
    A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, 28: 114–133, 1981.MathSciNetMATHCrossRefGoogle Scholar
  2. [BDG90]
    J. L. Balcâzar, J. Díaz, and J. Gabarró. Structural Complexity II. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1990.Google Scholar
  3. [Bus87]
    S. R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings 19th Symposium on Theory of Computing, p. 123–131. ACM Press, 1987.Google Scholar
  4. [RV97]
    K. Regan and H. Vollmer. Gap-languages and log-time complexity classes. Theoretical Computer Science, 188: 101–116, 1997.MathSciNetMATHCrossRefGoogle Scholar
  5. [Ku682]
    L. Kucera. Parallel computation and conflicts in memory access. Information Processing Letters, 14: 93–96, 1982.MathSciNetMATHCrossRefGoogle Scholar
  6. [KR90]
    R. Karp and V. Ramachandran. Parallel algorithms for sharedmemory machines. In J. van Leeuwen (éd.), Handbook of Theoretical Computer Science, vol. A, p. 869–941. Elsevier, Amsterdam, 1990.Google Scholar
  7. [Vis83a]
    U. Vishkin. Implementation of simultaneous memory access in models that forbid it. Journal of Algorithms, 4: 45–50, 1983.Google Scholar
  8. [Co188]
    R. Cole. Parallel merge sort. SIAM Journal on Computing, 17: 770–785, 1988.MathSciNetMATHCrossRefGoogle Scholar
  9. [FRW88]
    F. Fich, R. Ragde, and A. Wigderson. Relations between concurrent-write models of parallel computation. SIAM Journal on Computing, 17: 606–627, 1988.MathSciNetMATHCrossRefGoogle Scholar
  10. [Fic93]
    F. Fich. The complexity of computation on the parallel random access machine In J. H. Reif (ed.), Synthesis of Parallel Algorithms, p. 843–899. Morgan Kaufmann, San Mateo, CA, 1993.Google Scholar
  11. [SV81]
    Y. Shiloach and U. Vishkin. Finding the maximum, merging and sorting in a parallel computation model. Journal of Algorithms, 2: 88–102, 1981.MathSciNetMATHCrossRefGoogle Scholar
  12. [FW78]
    . Fortune and J. Wyllie. Parallelism in random access machines In Proceedings 10th Symposium on Theory of Computing,p. 114–118. ACM Press, 1978.Google Scholar
  13. [Fic93]
    F. Fich. The complexity of computation on the parallel random access machine In J. H. Reif (ed.), Synthesis of Parallel Algorithms, p. 843–899. Morgan Kaufmann, San Mateo, CA, 1993.Google Scholar
  14. [GHR95]
    R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, New York, 1995.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Heribert Vollmer
    • 1
  1. 1.Theoretische InformatikUniversität WürzburgWürzburgGermany

Personalised recommendations