Advertisement

Relations to Other Computation Models

  • Heribert Vollmer
Part of the Texts in Theoretical Computer Science An EATCS Series book series (TTCS)

Abstract

The results of the previous chapter show that there is a circuit complexity class which contains every length-respecting function f : {0,1}* → {0,1}*, computable or not:

Keywords

Turing Machine Global Memory Boolean Circuit Input Gate Input Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographic Remarks

  1. [CKS81]
    A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, 28: 114–133, 1981.MathSciNetMATHCrossRefGoogle Scholar
  2. [BDG90]
    J. L. Balcâzar, J. Díaz, and J. Gabarró. Structural Complexity II. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1990.Google Scholar
  3. [Bus87]
    S. R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings 19th Symposium on Theory of Computing, p. 123–131. ACM Press, 1987.Google Scholar
  4. [RV97]
    K. Regan and H. Vollmer. Gap-languages and log-time complexity classes. Theoretical Computer Science, 188: 101–116, 1997.MathSciNetMATHCrossRefGoogle Scholar
  5. [Ku682]
    L. Kucera. Parallel computation and conflicts in memory access. Information Processing Letters, 14: 93–96, 1982.MathSciNetMATHCrossRefGoogle Scholar
  6. [KR90]
    R. Karp and V. Ramachandran. Parallel algorithms for sharedmemory machines. In J. van Leeuwen (éd.), Handbook of Theoretical Computer Science, vol. A, p. 869–941. Elsevier, Amsterdam, 1990.Google Scholar
  7. [Vis83a]
    U. Vishkin. Implementation of simultaneous memory access in models that forbid it. Journal of Algorithms, 4: 45–50, 1983.Google Scholar
  8. [Co188]
    R. Cole. Parallel merge sort. SIAM Journal on Computing, 17: 770–785, 1988.MathSciNetMATHCrossRefGoogle Scholar
  9. [FRW88]
    F. Fich, R. Ragde, and A. Wigderson. Relations between concurrent-write models of parallel computation. SIAM Journal on Computing, 17: 606–627, 1988.MathSciNetMATHCrossRefGoogle Scholar
  10. [Fic93]
    F. Fich. The complexity of computation on the parallel random access machine In J. H. Reif (ed.), Synthesis of Parallel Algorithms, p. 843–899. Morgan Kaufmann, San Mateo, CA, 1993.Google Scholar
  11. [SV81]
    Y. Shiloach and U. Vishkin. Finding the maximum, merging and sorting in a parallel computation model. Journal of Algorithms, 2: 88–102, 1981.MathSciNetMATHCrossRefGoogle Scholar
  12. [FW78]
    . Fortune and J. Wyllie. Parallelism in random access machines In Proceedings 10th Symposium on Theory of Computing,p. 114–118. ACM Press, 1978.Google Scholar
  13. [Fic93]
    F. Fich. The complexity of computation on the parallel random access machine In J. H. Reif (ed.), Synthesis of Parallel Algorithms, p. 843–899. Morgan Kaufmann, San Mateo, CA, 1993.Google Scholar
  14. [GHR95]
    R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, New York, 1995.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Heribert Vollmer
    • 1
  1. 1.Theoretische InformatikUniversität WürzburgWürzburgGermany

Personalised recommendations