Skip to main content

Numerical Analysis of the Interface Problem in Continuous Fiber Ceramic Composites

  • Chapter
Computational Materials Design

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 34))

  • 442 Accesses

Abstract

Finite element analysis (FEA) and pushout tests have been used to discuss several key elements of interface debonding in continuous fiber ceramic matrix composites. This study includes (i) the interaction between fiber debonding and a matrix crack, (ii) the interface shear- stress distribution, and (iii) the interface de-bonding criterion. The interface debonding process is simulated including a pre-existing crack in the matrix. This simulation shows that the stability of the pre-existing crack may be affected by interface debonding ahead of it. The interfacial shear-stress distribution during the pushout test is also computed and gives useful information about the interface debonding criterion. Moreover, the numerical results also give a rational explanation for the experimentally observed trends, including the effect of thermally induced stress on the interfacial debonding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Goto, Y. Kagawa: Mater. Sci. Eng. A 176, 357 (1994).

    Google Scholar 

  2. K. Honda, Y. Kagawa: Acta Metall. Mater. 43, 1477 (1995).

    Article  Google Scholar 

  3. K. Honda, Y. Kagawa: Acta Mater. 44, 3267 (1996).

    Article  Google Scholar 

  4. J. Aveston, G. A. Cooper, A. Kelly: The Properties of Fiber Composites, Conference Proceedings, National Physical Laboratory, Guildford, IPC Science and Technology Press Ltd. (1971) p15.

    Google Scholar 

  5. D.C. Philips: J. Mater. Sci. 9, 1874 (1974).

    Google Scholar 

  6. K.M. Prewo, J.J. Brennan: J. Mater. Sci. 17, 1201 (1982).

    Article  ADS  Google Scholar 

  7. J. Aveston, A. Kelly: J. Mater. Sci. 8, 352 (1973).

    Article  ADS  Google Scholar 

  8. J. Aveston, A. Kelly: Phil. Trans. R. Soc. Lond. A 294, 519 (1980).

    Article  ADS  Google Scholar 

  9. D.J. Hannant, D.C. Hughes, A. Kelly: Phil. Trans. R. Soc. Lond. A 294, 175 (1983).

    Article  ADS  Google Scholar 

  10. D.B. Marshall, B.N. Cox, A.G. Evans: Acta Metall. 33, 2013 (1985).

    Article  Google Scholar 

  11. L.N. McCarteny: Proc. Roy Soc., Lond. A 409, 329 (1988).

    ADS  Google Scholar 

  12. B. Budiansky, J.W. Hutchinson, A.G. Evans: J. Mech. Phys. Solids 34, 167 (1986).

    Article  ADS  MATH  Google Scholar 

  13. P. Kangutkar: Ph.D. Theses, Drexel University, USA, (1992).

    Google Scholar 

  14. J.P. Romualdi, G.B. Baston: Proc. Am. Soc. Civil Eng. 89, 147 (1963).

    Google Scholar 

  15. A.S. Wang, X.G. Huang, M.W. Barsoum: Compos. Sci. and Technol. 44, 271 (1992).

    Article  Google Scholar 

  16. Y. Kagawa: Int. J. Eng. Fract Mech., submitted.

    Google Scholar 

  17. H. Tada, P.C. Paris, G.R. Irwin: The Stress Analysis of Cracks Handbook (Del Research Corporation, Hellertown, Pennsylvania, 1973).

    Google Scholar 

  18. J. Cook, J.E. Gordon: Proc. Roy. Soc., Lond. A 299, 508 (1964).

    ADS  Google Scholar 

  19. D.B. Marshall: J. Am. Ceram. Soc. 67, 259 (1984).

    Article  Google Scholar 

  20. D.B. Marshall, W.C. Oliver: J. Am. Ceram. Soc. 70, 542 (1987).

    Article  Google Scholar 

  21. Y. Kagawa, A. Okura, J. Jap. Inst. Met. 56, 278 (1992).

    Google Scholar 

  22. M.K. Brun, R.N. Singh: Adv. Ceram. Mater. 3, 506 (1988).

    Google Scholar 

  23. J.D. Bright, D.K. Shetty, C.W. Griffin, S.Y. Limaye: J. Am. Ceram. Soc. 72, 1891 (1989).

    Article  Google Scholar 

  24. S. Q Guo, Y. Kagawa: Acta Mater. 45, 2257 (1997).

    Article  Google Scholar 

  25. Y. Kagawa, K. Honda: Ceram. Eng. Sci. Proc. 12, 1127 (1991).

    Article  Google Scholar 

  26. K. Honda, Y. Kagawa: J. Jap. Inst. Met. 11, 1360 (1992).

    Google Scholar 

  27. K. Shetty: J. Am. Ceram. Soc. 71, C-107 (1988).

    Article  Google Scholar 

  28. A. Dollar, P.S. Steif: Int. J. Solid Struct. 24, 789 (1988).

    Article  Google Scholar 

  29. P.D. Warren, T.J. Mackin, A.G. Evans: Acta Metall. Mater. 40 ,1243 (1992).

    Article  Google Scholar 

  30. R.J. Kerans, T.A. Parthasarathy: J. Am. Ceram. Soc. 74, 1585 (1991).

    Article  Google Scholar 

  31. Y.-C. Gao, Y.W. Mai, B. Cottlell: J. Appl. Math. Phys. (ZAMP) 39, 550 (1988).

    Article  MATH  Google Scholar 

  32. J.W. Hutchinson, H.M. Jensen: Mech. Mater. 9, 139 (1990).

    Article  Google Scholar 

  33. L.N. McCarteny,: Proc. R. Soc. Lond. A 425, 215 (1989).

    ADS  Google Scholar 

  34. C.-H Hsueh: Mater. Sci. Eng. A 123, 1 (1990).

    Google Scholar 

  35. K.T. Faber, S.H. Advani, J.K. Lee, J.T. Linn: J. Am. Ceram. Soc. 69, C-208 (1986).

    Google Scholar 

  36. D.H. Grande, J.F. Mandell, K.C.C. Hong: J. Mater. Sci. 23, 311 (1988).

    Article  ADS  Google Scholar 

  37. R. Ballarini, S. Ahmed, R.L. Mullen: in Interfaces in Metal-Ceramic Composites, Eds. R.Y. Lin, R.J. Arsenaut, G.P. Martins, S.G. Fishman, Minerals, Metals & Materials Society, (1989) p349.

    Google Scholar 

  38. G.L. Povirk, A. Needleman: Trans. ASME, J. Eng. Mater. Tech. 115, 286 (1993).

    Article  Google Scholar 

  39. H.C. Tsai, A. Arocho, L.W. Gause: Mater. Sci. Eng. A 126, 295 (1990).

    Google Scholar 

  40. C. Atkinson: J. Mech. Phys. Solids 30, 97 (1982).

    Article  ADS  Google Scholar 

  41. R.A. Schapery: J. Comp. Mater. 2, 380 (1968).

    Article  Google Scholar 

  42. Y. Kagawa, C. Masude, C. Fujiwara, A. Fukushima: ASTM-STP 1253, 26 (1996).

    Google Scholar 

  43. A. Takaku, R.G. C. Arrige: J. Phys. D: Appl. Phys. 6, 2038 (1973).

    Article  ADS  Google Scholar 

  44. P. Lawrence: J. Mater. Sci. 7, 1 (1972).

    Article  ADS  Google Scholar 

  45. T. Kishi: Fracture Mechanics of Ceramics: Vol. 9, Eds. R.C. Bradt et al. (Plenum Press, New York, 1992).

    Google Scholar 

  46. M.R. Piggott: Compos. Sci. Tech. 30, 295 (1987).

    Article  Google Scholar 

  47. H. Stang, S.P. Shah: J. Mater Sci. 21, 953 (1986).

    Article  ADS  Google Scholar 

  48. Y.F. Liu, Y. Kagawa: Mater. Sci. Eng. A 212, 75 (1996).

    Google Scholar 

  49. Y. Kagawa: Mater. Sci. Eng., in press

    Google Scholar 

  50. A. Elkind, M. Barsoum, P. Kangutkar: J. Am. Ceram. Soc. 75, 2871 (1992).

    Article  Google Scholar 

  51. R.W. Goettler, K.T. Faber: Compos. Sci. Technol. 37, 129 (1989).

    Article  Google Scholar 

  52. Ceramic Source, Am. Ceram. Soc. 6, 38 (1990–91).

    Google Scholar 

  53. J.D. Bright, S. Danchaivijit, D.K. Shetty: J. Am. Ceram. Soc. 74, 115 (1991).

    Article  Google Scholar 

  54. C.K.Y. Leung, V.C. Li: Composites 21, 305 (1990).

    Article  Google Scholar 

  55. S.Q. Guo, Y. Kagawa, Y. Tanaka, C. Masuda: Acta Mater., submitted.

    Google Scholar 

  56. K. Honda, Y. Kagawa: J. Jap. Inst. Metal. 56, 1360 (1992).

    Google Scholar 

  57. K. Honda, Y. Kagawa: J. Jap. Inst. Metal. 56, 481 (1992).

    Google Scholar 

  58. T.J. Mackin, P.D. Warren, A.G. Evans: Acta Metall & Mater. 40, 1251 (1992).

    Article  Google Scholar 

  59. T.A. Parthasarathy, D.B. Marshall, R.J. Kerans: Acta Metall. Mater. 42, 3373 (1994).

    Google Scholar 

  60. E.R. Fuller, Jr., E.P. Butler, W.C. Carter: Toughening Mechanisms in Quasi-Brittle Materials, Ed. by S.P. Shah (Kluwer Academic Publishers, 1991) p385.

    Chapter  Google Scholar 

  61. P.D. Jero, R.J. Kerans: Scr. Metall. 24, 2315 (1990).

    Article  Google Scholar 

  62. W.C. Carter, E.P. Butler, E. R. Fuller Jr: Scr. Metall. 25, 579 (1991).

    Article  Google Scholar 

  63. R.J. Kerans, R.S. Hay, N.J. Gano, T.A. Parthasarathy: Am. Ceram. Soc. Bull. 68, 429 (1989).

    Google Scholar 

  64. M.N. Kallas, D.A. Koss, H.T. Hahn, J.R. Hellmann: J. Mater. Sci. 27, 3821 (1992).

    Article  ADS  Google Scholar 

  65. L.J. Ghosn, J.I. Eldridge, P. Kantzos: Acta Metall. Mater. 42, 3895 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kagawa, Y., Masuda, C. (1999). Numerical Analysis of the Interface Problem in Continuous Fiber Ceramic Composites. In: Saito, T. (eds) Computational Materials Design. Springer Series in Materials Science, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03923-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03923-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08404-1

  • Online ISBN: 978-3-662-03923-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics