Skip to main content

CALPHAD Approach to Materials Design

  • Chapter
Computational Materials Design

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 34))

  • 464 Accesses

Abstract

A brief outline of the CALPHAD method, which has been developed to alleviate the difficulty in obtaining phase diagrams by experiment alone, is presented. This method enables calculation of stable and metastable phase equilibria, as well as thermodynamic properties such as activity, enthalpy, driving force for precipitation etc., on thermodynamic grounds. Some results using the CALPHAD approach are illustrated, taking examples from compound semiconductors and solder materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Nishizawa: Progress of CALPHAD. Mater. Trans. Jpn. Inst. Met. 33, 713 (1992).

    Google Scholar 

  2. M. Hansen: “Der Aufbau der Zweistofflegierungen” (Springer, 1936).

    Book  Google Scholar 

  3. L. Kaufman, H. Bernstein: “Computer Calculation of Phase Diagrams” (Academic Press, NY, 1970).

    Google Scholar 

  4. M. Hillert, L.-I. Staffansson: The regular solution model for stoichiometric phases and ionic solutions. Acta Chem. Scand. 24, 3618 (1970).

    Article  Google Scholar 

  5. R. Kikuchi: A theory of cooperative phenomena. Phys. Rev. 81, 988 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. G. Inden: Report on the Project Meeting Calphad V, 21–25 June 1976, Max-Planck Inst. Eisenforsch. Düsseldorf (1976), III, 4–1.

    Google Scholar 

  7. M. Hillert, M. Jarl: A model for alloying effects in ferromagnetic metals. CALPHAD 2, 227 (1978).

    Article  Google Scholar 

  8. “Kinzoku Data Book”, 2nd ed. (Maruzen, Tokyo, 1984) (in Japanese).

    Google Scholar 

  9. J.R. Arthur: Vapor pressures and phase equilibria in the Ga-As system. J. Phys. Chem. Solids 28, 2257 (1967).

    Article  ADS  Google Scholar 

  10. K. Ishida, H. Tokunaga, H. Ohtani, T. Nishizawa: Data base for calculating phase diagrams of III–V alloy semiconductors. J. Cryst. Growth 98, 140 (1989).

    Article  ADS  Google Scholar 

  11. H. Ohtani, K. Kojima, K. Ishida, T. Nishizawa: Miscibility gap in II–VI alloy semiconductor systems. J. Alloys Compd. 182, 103 (1992).

    Article  Google Scholar 

  12. K. Osamura, K. Nakajima, Y. Murakami: Calculation of III–V quasi-binary phase diagrams and theoretical analysis of the excess free energies for their solid solutions. J. Jpn. Inst. Met., 36, 744 (1972) (in Japanese).

    Google Scholar 

  13. G.B. Stringfellow: Calculation of ternary and quaternary III–V phase diagrams. J. Cryst. Growth 27, 21 (1974).

    ADS  Google Scholar 

  14. D.W. Kisker, A.G. Zawadzki: Estimation of solid-vapor distribution coefficients in organometallic vapor phase epitaxy of II–VI semiconductors. J. Cryst. Growth 89, 378 (1988).

    Article  ADS  Google Scholar 

  15. E. Rudy: Boundary phase stability and critical phenomena in higher order solid solution systems. J. Less-Common Met. 33, 43 (1973).

    Article  Google Scholar 

  16. K. Kobayashi, H. Ohtani, K. Ishida: Thermodynamic analysis on phase equilibria of thin film in III–V alloy semiconductors. Proceedings of the 14th Electronic Materials Symposium, Izu-Nagaoka, Japan (1995) 141.

    Google Scholar 

  17. T. Yokogawa, H. Sato, M. Ogura: Dependence of elastic strain on thickness for ZnSe films grown on lattice-mismatched materials. Appl. Phys. Lett. 52, 1678 (1988).

    Article  ADS  Google Scholar 

  18. M. Quillec, H. Launois, M.C. Joncour: Liquid phase epitaxy of unstable alloys: Substrate-induced stabilization and connected effects. J. Vac. Sci. Technol. B 1 (2), 238 (1983).

    Article  Google Scholar 

  19. H. Ohtani, K. Okuda, K. Ishida: Thermodynamic study of phase equilibria in the Pb-Sn-Sb system. J. Phase Equilibria 16, 416 (1995).

    Article  Google Scholar 

  20. K. Mori, K.N. Ishihara, P.H. Shingu: Metastable phase diagram of the Pb-Sn system. Mater. Sci. Eng. 78, 157 (1986).

    Article  Google Scholar 

  21. H.J. Fecht, J.H. Perepezko: Metastable phase equilibria in the lead-tin alloy system: Part I. Experimental. Metall. Trans. A 20, 785 (1989).

    Article  Google Scholar 

  22. J. Glazer: Metallurgy of low temperature Pb-free solders for electronic assembly. Int. Mater. Rev. 40, 65 (1995).

    Article  Google Scholar 

  23. H. Ohtani, K. Ishida: A thermodynamic study of phase equilibria in the Bi-Sn-Sb system. J. Electron. Mater. 23, 747 (1994).

    Article  ADS  Google Scholar 

  24. S. Ishihara, H. Ohtani, K. Ishida, T. Saitoh: Thermodynamic assessment of the SnBi-In system. Abstracts of the Japan Institute of Metals 121, 386 (1997) (in Japanese).

    Google Scholar 

  25. M. Miyashita, H. Ohtani, K. Ishida: Thermodynamic study of the phase equilibria in the Ag-Sn-Zn ternary system. Abstracts 117th meeting of JIM, International Symposia on Advanced Materials and Technology for the 21st Century (1995) 1262, p 305.

    Google Scholar 

  26. E.A. Guggenheim: Statistical thermodynamics of the surface of a regular solutions. Trans. Faraday Soc. 41, 150 (1945).

    Article  Google Scholar 

  27. I. Prigogine, R. Defay, A. Bellemans, D.H. Everett: “Surface Tension and Absorption” (John Wiley & Sons, 1966).

    Google Scholar 

  28. J.A.V. Butler: The thermodynamics of the surface of solutions. Proc. R. Soc. Lond.A 135, 348 (1932).

    Article  ADS  MATH  Google Scholar 

  29. T. Tanaka, T. Iida: Application of a thermodynamic database to the calculation of surface tension for iron-base liquid alloys. Steel Res. 65, 21 (1994).

    Google Scholar 

  30. T. Iida, R.I.L. Guthrie: “The Physical Properties of Liquid Metals” (Clarendon Press, Oxford, 1988).

    Google Scholar 

  31. M. Miyashita: Thermodynamic analysis on the phase equilibria in the Sn-Ag based microsolder alloys. Master Thesis, Tohoku University, Japan (1998) (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohtani, H. (1999). CALPHAD Approach to Materials Design. In: Saito, T. (eds) Computational Materials Design. Springer Series in Materials Science, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03923-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03923-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08404-1

  • Online ISBN: 978-3-662-03923-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics