Advertisement

Fundamental Concepts

  • Sadao Mori
  • Howard G. Barth
Chapter
Part of the Springer Laboratory book series (SPLABORATORY)

Abstract

Molecular size, or more precisely, molecular hydrodynamic volume governs the separation process of SEC. That is, as a mixture of solutes of different size passes through a column packed with porous particles, the molecules that are too large to penetrate the pores of the packing elute first, as shown in Fig. 2.1. Smaller molecules, however, that can penetrate or diffuse into the pores, elute at a later time or elution volume. Thus a sample is separated or fractionated by molecular size, the profile of which describes the molecular weight distribution (MWD) or size distribution of the mixture. If the SEC system is calibrated with a series of solutes of known MW, as shown in Fig. 2.2, a relationship between log MW and elution volume is obtained. This relationship can then be used as a calibration curve to determine the MWD and MW averages of samples, as explained in Chap. 7.

Keywords

Pore Volume Intrinsic Viscosity Elution Volume Retention Volume Column Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dawkins JV, Hemming M (1975) Makromol Chem 176: 1777, 1795, 1815Google Scholar
  2. 2.
    Cassasa EF (1967) J Polym Sci, Part B 5: 773CrossRefGoogle Scholar
  3. 3.
    Cassasa EF (1971) J Phys Chem 75: 3929CrossRefGoogle Scholar
  4. 4.
    Giddings JC, Kucera E, Russel CP, Myers MN (1968) J Phys Chem 72: 4397CrossRefGoogle Scholar
  5. 5.
    Porath J (1963) J Pure Appl Chem 6: 233CrossRefGoogle Scholar
  6. 6.
    Squire PG (1964) Arch Biochem Biophys 107: 471CrossRefGoogle Scholar
  7. 7.
    Laurent TC, Killander J (1964) J Chromatogr 14: 317CrossRefGoogle Scholar
  8. 8.
    Ogston AG (1958) Trans Faraday Soc 54: 1754CrossRefGoogle Scholar
  9. 9.
    Van Kreveld, Van Den Hoed N (1973) J Chromatogr 83: 111CrossRefGoogle Scholar
  10. 10.
    Yau WW, Malone CP (1971) Polym Prepr ( Am Chem Soc, Div Polym Chem ) 12: 797Google Scholar
  11. 11.
    Kubin M, Vozka S (1980) J Polym Sci, Polym Symp 68: 209CrossRefGoogle Scholar
  12. 12.
    Hager D (1980) J Chromatogr 187: 285CrossRefGoogle Scholar
  13. 13.
    Ackers GK (1964) Biochem 3: 723CrossRefGoogle Scholar
  14. 14.
    Smith WB, Kollmansberger (1965) J Phys Chem 69: 4157CrossRefGoogle Scholar
  15. 15.
    Yau WW, Malone CP (1967) J Polym Sci., Part B 5: 663CrossRefGoogle Scholar
  16. 16.
    Di Marzio EZ, Guttman CM (1969) J Polym Sci, Part B 7: 267CrossRefGoogle Scholar
  17. 17.
    Dimarzio EZ, Guttman CM (1979) Macromolecules 3: 131CrossRefGoogle Scholar
  18. 18.
    Guttman CM, Dimarzio EZ (1970) Macromolecules 3: 681CrossRefGoogle Scholar
  19. 19.
    Verhoff HF, Sylvester ND (1970) Macromol Sci - Chem A4: 979CrossRefGoogle Scholar
  20. 20.
    Aubert JH, Tirrell M (1980) Sep Sci Technol 15: 123CrossRefGoogle Scholar
  21. 21.
    Aubert JH, Tirrell M (1980) Rheol Acta 19: 452CrossRefGoogle Scholar
  22. 22.
    Cheng WJ (1986) J Chromatogr 362: 309CrossRefGoogle Scholar
  23. 23.
    Yau WW, Kirkland JJ, Bly DD (1979) Modern Size Exclusion Chromatography. Wiley, New YorkGoogle Scholar
  24. 24.
    Yau WW, Malone CP, Suc Han HL (1970) Sep Sci 5: 259CrossRefGoogle Scholar
  25. 25.
    Yau WW, Suchan HL, Malone CP (1968) J Polym Sci Part A-2 6: 1349CrossRefGoogle Scholar
  26. 26.
    Yau WW, Malone CP, Fleming SW (1968) J Polym Sci Part B 6: 803CrossRefGoogle Scholar
  27. 27.
    Chang TL (1968) Anal Chim Acta 42: 51CrossRefGoogle Scholar
  28. 28.
    Hoagland DA (1996) ACS Symp Ser 635: 173CrossRefGoogle Scholar
  29. 29.
    Dawkins JV (1976) J Polym Sci, Polym Phys Ed 14: 569CrossRefGoogle Scholar
  30. 30.
    Tanford C (1961) Physical Chemistry of Macromolecules. Wiley, New YorkGoogle Scholar
  31. 31.
    Kratochvil P (1987) Classical Light Scattering from Polymer Solutions. Elsevier, AmsterdamGoogle Scholar
  32. 32.
    Mays JW, Hadjichristidis N (1991) In: Barth HG, Mays JW (eds) Modern Methods of Polymer Characterization, Chapter 7. Wiley, New YorkGoogle Scholar
  33. 33.
    Flory PJ, Fox TG (1951) J Am Chem Soc 73: 1904CrossRefGoogle Scholar
  34. 34.
    Snyder LR, Kirkland JJ (1979) Introduction to Modern Liquid Chromatography. Wiley, New YorkGoogle Scholar
  35. 35.
    Katz E, Eksteen R, Schoenmakers P, Miller N (1998) Handbook of HPLC. Dekker, New YorkCrossRefGoogle Scholar
  36. 36.
    DIN 55672–1 Gelpermeationschromatographie (GPC) Teil 1: Tetrahydrofuran (THF) as Elutionsmittel (1995–02)Google Scholar
  37. 37.
    Bly DD (1968) J Polym Sci Part C 21: 13Google Scholar
  38. 38.
    ASTM D3536–76 (Reapproved 1986) Test Method for Molecular Weight Averages and Molecular Weight Distribution of Polystyrene by Liquid Exclusion Chromatography (Gel Permeation Chromatography - GPC) (1986–10)Google Scholar
  39. 39.
    Yau WW, Stoklosa HJ, Bly DD (1977) J Appl Polym Sci 21: 1911CrossRefGoogle Scholar
  40. 40.
    Hamielic AE, Ray WH (1969) J Appl Polym Sci 13: 1319CrossRefGoogle Scholar
  41. 41.
    Provder T, Rosen EM (1970) Sep Sci 5: 437CrossRefGoogle Scholar
  42. 42.
    Yau WW (1977) Anal Chem 49: 395CrossRefGoogle Scholar
  43. 43.
    Barth HG (1984) LC Magazine 2:24 (Jan)Google Scholar
  44. 44.
    Yau WW, Kirkland JJ, Bly DD, Stoklosa HJ (1976) J Chromatogr 125: 219CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Sadao Mori
    • 1
  • Howard G. Barth
    • 2
  1. 1.Mie UniversityNagoyaJapan
  2. 2.Central Research and DevelopmentDuPont CompanyWilmingtonUSA

Personalised recommendations