Skip to main content

Aqueous Size Exclusion Chromatography

  • Chapter
Size Exclusion Chromatography

Part of the book series: Springer Laboratory ((SPLABORATORY))

Abstract

The determination of molecular weight (MW) averages and molecular weight distributions (MWD) of water-soluble polymers, such as nonionic and ionic synthetic polymers, proteins and peptides, by aqueous SEC sometimes encounters difficulties because of non-size exclusion effects. SEC is a separation technique based on molecular size and any polymers eluted at the same retention volume should have the same molecular size making it possible to calculate the MW or MWD of a polymer using a calibration curve constructed with polymer standards that are different from the polymer under investigation. Moreover, it can be assumed that species that elute earlier from SEC columns have higher MWs than those of the same type of polymer eluted later.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth HG (1987) In: Provder T (ed) ACS Symposium Series No. 352, ACS, Washington, DC, chap 2

    Google Scholar 

  2. Barth HG, Regnier FE (1980) J Chromatogr 192: 275

    Article  CAS  Google Scholar 

  3. Mori S (1989) Anal Chem 61: 530

    Article  CAS  Google Scholar 

  4. Mori S, Kato M (1987) J Liq Chromatogr 10: 3113

    Article  CAS  Google Scholar 

  5. Dubin PL, Prinsipi JM (1989) J Chromatogr 479: 159

    Article  CAS  Google Scholar 

  6. Maezawa S, Takagi T (1983) J Chromatogr 280: 124

    Article  CAS  Google Scholar 

  7. Link GW Jr, Keller PL, Stout RW, Banes AJ (1985) J Chromatogr 331: 253

    Article  CAS  Google Scholar 

  8. Kato T, Tokuya T, Nozaki T, Takahashi A (1984) Polymer 25: 218

    Article  CAS  Google Scholar 

  9. Gallec G, Anderson AW, Tsao GT (1984) J Polym Sci Polym Chem Ed 22: 287

    Article  Google Scholar 

  10. Muller G, Yonnet C (1984) Makromol Chem Rapid Commun 5: 197

    Article  CAS  Google Scholar 

  11. Wonnacott DM, Patton EV (1987) J Chromatogr 389: 103

    Article  CAS  Google Scholar 

  12. Patton EV, Wonnacott DM (1987) J Chromatogr 389: 115

    Article  CAS  Google Scholar 

  13. Domard A, Rinaudo M (1984) Polym Commun 25: 55

    CAS  Google Scholar 

  14. Kühn A, Förster S, Lösch R, Rommelfanger M, Rosenauer C, Schmidt M (1993) Makromol Chem Rapid Commun 14: 433

    Article  Google Scholar 

  15. Yang YB, Verzele M (1987) J Chromatogr 391: 383

    Article  CAS  Google Scholar 

  16. Richter WO, Schwandt P (1984) J Chromatogr 288: 212

    Article  CAS  Google Scholar 

  17. Irvine GB (1987) J Chromatogr 404: 215

    Article  CAS  Google Scholar 

  18. Mascher E, Lundahl P (1989) J Chromatogr 476: 147

    Article  CAS  Google Scholar 

  19. Mori S, unpublished data

    Google Scholar 

  20. Dimenna GP, Segall HJ (1981) J Liq Chromatogr 4: 639

    Article  CAS  Google Scholar 

  21. Ahmed F, Modrek B (1992) J Chromatogr 599: 25

    Article  CAS  Google Scholar 

  22. Visser S, Slangen CJ, Robben Ajpm (1992) J Chromatogr 599: 205

    Article  CAS  Google Scholar 

  23. Cauret N, CÔTÉ J, Archambault J, André G (1992) J Chromatogr 594: 179

    Article  Google Scholar 

  24. Himmel ME, Perna PJ, Mcdonell MW (1982) J Chromatogr 240: 155

    Article  CAS  Google Scholar 

  25. Ellegren H, Laas T (1989) J Chromatogr 467: 217

    Article  CAS  Google Scholar 

  26. Van Dijk Japp, Varkevisser FA, Smit JAM (1987) J Polym Sci Part B Polym Phys 25: 149

    Article  Google Scholar 

  27. Stone RG, Krasowski JA (1981) Anal Chem 53: 736

    Article  CAS  Google Scholar 

  28. Eremeeva TE, Bykova TO (1993) J Chromatogr 639: 159

    Article  CAS  Google Scholar 

  29. Praznik W, Beck Rhf, Eigner WD (1987) J Chromatogr 387: 467

    Article  CAS  Google Scholar 

  30. Devries JX (1989) J Chromatogr 465: 297

    Article  CAS  Google Scholar 

  31. Lambert F, Milas M, Rinauno M (1982) Polym Bull 7: 185

    Article  CAS  Google Scholar 

  32. Pellinen J, Salkinoja-Salonen M (1985) J Chromatogr 322: 129

    Article  CAS  Google Scholar 

  33. Motohashi N, Nakamichi Y, Mori I, Nishikawa H, Umemoto J (1988) J Chromatogr 435: 335

    Article  CAS  Google Scholar 

  34. Shimada E, Matsumura G (1992) J Chromatogr 627: 43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mori, S., Barth, H.G. (1999). Aqueous Size Exclusion Chromatography. In: Size Exclusion Chromatography. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03910-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03910-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08493-5

  • Online ISBN: 978-3-662-03910-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics