Skip to main content

Genetics of Gender Dimorphism in Higher Plants

  • Chapter
Gender and Sexual Dimorphism in Flowering Plants

Abstract

Upon the rediscovery of Mendel’s laws, biologists became very interested in the genetics that distinguished males from females. Many plant systems were examined in the early part of the century for the genetic basis of gender dimorphism. In most cases, herbaceous plants with relatively short generation times were studied for practical reasons and tree species, many of which produce unisexual flowers, were largely ignored. Even though only a sampling of species was studied, the most obvious feature was a lack of uniformity in the genetic mechanisms to distinguish staminate (male) from pistillate (female) flowering plants (previously reviewed in (Dellaporta and Calderon-Urrea 1993; Grant et al. 1994a; Irish and Nelson 1989). Most of the monoecious and dioecious species studied are more closely related to hermaphroditic species that they are to other unisexual species. Only three plant families, the Cucurbitaceae (melons, squash and cucumbers) (Robinson et al. 1976), the Salicaceae (willows) (Westergaard 1958) and the Cannabidaceae (with only three species) (Parker 1990) have predominantly unisexual species. In other families, unisexual species are rare and they are scattered among clades (Yampolsky and Yampolsky 1922). Their phylogenetic distribution indicates that monoecious and dioecious species have evolved independently from hermaphroditic progenitors in many lineages. Therefore, it is not surprising that a variety of genetic mechanisms have emerged to distinguish male and female flower development from hermaphroditic. The only limits to the possible mechanisms are the following demands for reproduction: (1) the development of one type of reproductive organ must be impeded without inhibiting the development of the other (and with minimal change to other floral organs); (2) mating of male and female should result in progeny that are also male and female. Some of the very different genetic mechanisms described are briefly summarized in Table 1. The purpose of this chapter is to illustrate the extent of the variety of genetic mechanisms regulating gender dimorphism in monoecious and dioecious plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad AR, Mehrtens BJ, Mackenzie SA (1995) Specific expression in reproductive tissues and fate of a mitochondria] sterility associated protein in cytoplasmic male-sterile bean. Plant Cell 7: 271–285

    PubMed  CAS  Google Scholar 

  • Ainsworth C, Crossley S, Buchanan-Wollaston V, Thangavelu M, Parker J (1995) Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression. Plant Cell 7: 1583–1598

    PubMed  CAS  Google Scholar 

  • Allen CE (1940) The genotypic basis of sex-expression in angiosperms. Bot Rev 6: 227–300

    Article  Google Scholar 

  • Barlow BA Weins D (1976) Translocation heterozygosity and sex ratio in Viscum fischeri. Heredity 37: 27–40

    Article  Google Scholar 

  • Behringer RR, Finegold MJ, Cate RL (1994) Müllerian-inhibiting substance function during mammalian sexual development. Cell 79: 415–425

    Article  PubMed  CAS  Google Scholar 

  • Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995) Cloning and characterization of the maize Ani gene. Plant Cell 7: 75–84

    PubMed  CAS  Google Scholar 

  • Bogan JS Page DC (1994) Ovary? Testes?–Mammalian dilemma. Cell 76: 603–607

    Article  PubMed  CAS  Google Scholar 

  • Bracale M, Caporali E, Galli MG, Longo C, Marziani-Longo G, Rossi G, Spada A, Soave C, Falavi-gna A, Raffali F, Maestri E, Restivo FM, Tassi F (1991) Sex determination and differentiation in Asparagus officinalis L. Plant Sci 80: 67–77

    Article  CAS  Google Scholar 

  • Capel B (1995) New bedfellows in the mammalian sex determination affair. Trends Genet 11: 161–163

    Article  PubMed  CAS  Google Scholar 

  • Chailakhyan MK (1979) Genetic and hormonal regulation of growth, flowering and sex expression in plants. Am J Bot 66: 717–736

    Article  CAS  Google Scholar 

  • Champault, A (1969) Masculinisation d’inflorescences femelles de Mercurialis annua L (2n=16) par culture in-vitro de noeuds isoles en presence d’auxine. C R Acad Sci Paris serie D 269: 1948–1950

    CAS  Google Scholar 

  • Champault A (1973) Effets de quelques régulateurs de la croissance sur les noeuds isoles de Mercurialis annua L. (2n=16) cultives in vitro. Bull. Soc. Bot. Fr. 120: 87–100

    CAS  Google Scholar 

  • Charlesworth B (1991) The evolution of sex chromosomes. Science 251: 1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury AM (1993) Nuclear genes controlling male fertility. Plant Cell 5: 1277–1283

    PubMed  Google Scholar 

  • Cheng PC, Gryson RI, Walden DB (1983) Organ initiation and the development of unisexual flowers in the tassel and ear of Zea mays. Am J Bot 70: 450–462

    Article  Google Scholar 

  • Ciupercescu DD, Veuskens J, Mouras A, Ye D, Briquet M, Negrutiu I (1990) Karyotyping Melan-drium album, a dioecious plant with heteromorphic sex chromosomes. Genome 33: 556–562

    Article  CAS  Google Scholar 

  • Clark SE, Running M, P., Meyerowitz EM (1993) CLAVATAI, a regulator of meristem and flower development in Arabidopsis. Development 119: 397–418

    Google Scholar 

  • Cline TW (1993) The Drosophila sex determination signal: how do flies count to two? Trends Genet 9: 385–390

    Article  PubMed  CAS  Google Scholar 

  • Cohen DR, Sinclair AH, McGovern JD (1994) SRY protein enhances transcription of Fos-related antigen 1 promoter constructs. Proc Natl Acad Sci USA 91: 4372–4376

    Article  PubMed  CAS  Google Scholar 

  • Correns C (1928) Baur E and Hartmann M (eds) Bestimmung, Vererbung und Verteilung des Geschlechtes bei den höheren Pflanzen Vol 2 Gebrüder Borntraeger Berlin, pp 1–138

    Google Scholar 

  • Crone W Lord EM (1993) Flower development in the organ number mutant CLAVATAI-1 of Arabidopsis thaliana. Am J Bot 80: 1419–1426

    Article  Google Scholar 

  • Davies B Schwarz-Sommer Z (1994) Control of floral organ identity by homeotic MADS-box transcription factors. In: Nover L (ed) Plant promoters and transcription factors. Springer, Berlin Heidelberg New York, pp 235–258

    Google Scholar 

  • Dellaporta SL Calderon-Urrea A (1993) Sex determination in flowering plants. Plant Cell 5: 1241–1251

    Google Scholar 

  • Dellaporta SL Calderon-Urrea A (1994) The sex determination process in maize. Science 266: 1501–1505

    Article  Google Scholar 

  • DeLong A, Calderon-Urrea A, Dellaporta SL (1993) Sex determination gene tasselseed2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74: 757–768

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH, Leavings CS (1987) A mitochondrial protein associated with cytoplasmic male sterility in maize. Proc. Natl. Acad. Sci USA 84: 5374–5378

    Google Scholar 

  • Donnison IS, Siroky J, Vyskot B, Saedler H, Grant, SR (1996) Isolation of Y chromosome-specific sequences from Silene latifolia and mapping of male sex determining genes using representational difference analysis. Genetics 144: 1893–1901

    PubMed  CAS  Google Scholar 

  • Durand B Durand R (1991) Sex determination and reproductive organ differentiation in Mercuriales. Plant Sci 80, 49–65

    Article  Google Scholar 

  • Frankel R and Galun E (1977) Pollination mechanisms, reproduction and plant breeding Springer Berlin Heidelberg New York.

    Google Scholar 

  • Fujioka S, Yamane H, Spray CR, Gaskin P, MacMillan J, Phinney BO, Takahashi N (1988) Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3 and dwarf-5 seedlings of Zea mays L. Plant Physiol 88: 1367–1372

    Article  PubMed  CAS  Google Scholar 

  • Galdn F (1946) Sur la génétique de la monoecie et dioecie zygotique chez Ecballium elatherium Rich. CR Acad Sci Paris 222: 1130

    Google Scholar 

  • Galun E (1959) The role of auxins on sex expression in cucumber. Physiol Planta 12: 48–61

    Article  Google Scholar 

  • Goto K Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Gen Dev 8: 1548–1560

    Article  CAS  Google Scholar 

  • Grant S, Houben A, Vyskot B, Siroky J, Pan W-H, Macas J, Saedler H (1994a) Genetics of sex determination in flowering plants. Dev Genet 15, 214–230

    Article  Google Scholar 

  • Grant SR, Hunkirchen B, Saedler H (1994b) Developmental differences between male and female flowers in the dioecious plant Silene latifolia. Plant J 6: 471–480

    Article  Google Scholar 

  • Gubbay J, Collignin J, Koopman P, Capel B, Economou A, Münsterberg A, Vivian N, Goodfellow P, Lovell-Badge R (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346: 245–250

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR (1991) Plant mitochondrial mutations and male sterility. Ann Rev Genet 25: 461–486

    Article  PubMed  CAS  Google Scholar 

  • Hardenack S, Ye D, Saedler H, Grant S (1994) Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white tampion. Plant Cell 6: 1775–1787

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison J (1963) Sex expression in flowering plants. Brookhaven Symp Quant Biol 16: 109–125

    Google Scholar 

  • Irish E Nelson T (1989) Sex determination in monoecious and dioecious plants. Plant Cell 1: 737–744

    PubMed  Google Scholar 

  • Irish E, Nelson T (1993) Development of tassel seed 2 inflorescences in maize. Am J Bot 80: 292–299

    Article  Google Scholar 

  • Irish EE, Langdale JA, Nelson TM (1994) Interactions between Tasselseed genes and other sex determining genes in maize. Dev Genet 15: 155–171

    Article  Google Scholar 

  • Iwahori S, Lyons JN, Smith OE (1970) Sex expression in cucumber as affected by 2-chloro-ethylphosphoric acid, ethylene and growth regulators. Plant Physiol 46: 412–415

    Article  PubMed  CAS  Google Scholar 

  • Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene apetala3 of Arabidopsis thali-ana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697

    Article  PubMed  CAS  Google Scholar 

  • Janick J Stevenson EC (1955) Genetics of the monoecious character in spinach. Genetics 40: 429–437

    PubMed  CAS  Google Scholar 

  • Katsumi M (1964) Gibberellin-like activities of certain auxins and diterpenes: University of California, Los Angeles.

    Google Scholar 

  • Kennell JC Pring DR (1987) Initiation and processing of atp6, T-urf13 and 0RF221 transcripts form mitochondria of T cytoplasm maize. Mol Gen Genet 216: 16–24

    Article  Google Scholar 

  • Kennell JC, Wise RP, Pring DR (1987) Influence of nuclear background on transcription of a maize mitochondrial region associtaed with Texas male sterile cytoplasm. Mol Gen Genet 210: 399–406

    Article  CAS  Google Scholar 

  • Kihara H (1930) Karyologische Studien an Fragaria mit besonderer Berücksichtigung der Geschlechtschromosomen. Cytologia 1: 345–357

    Article  Google Scholar 

  • Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for SRY. Nature 351: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Krishnamoorthy HN Talukdar AR (1976) Chemical control of sex expression in Zea mays L. Z. Pflanzenphysiol 79: 91–94

    CAS  Google Scholar 

  • Latham K (1996) X chromosome imprinting and inactivation in the early mammalian embryo. Trends Genet 12: 134–138

    Article  PubMed  CAS  Google Scholar 

  • Leavings CS (1993) Thoughts on cytoplasmic male sterility in cms-T maize. Plant Cell 5: 1285–1290

    Google Scholar 

  • Lebel-Hardenack S, Ye D, Koutnikova H, Saedler H and Grant SR (1997) Conserved expression of a TASSELSEED2 homolog in the tapetum of the dioecious Silene latifolia and Arabidopsis thaliana. Plant J 12: 515–526.

    Article  PubMed  CAS  Google Scholar 

  • Liston A, Rieseberg LH, Elias TS (1990) Functional androdioecy in the flowering plant Datisca glomerata. Nature 343: 641–642

    Article  Google Scholar 

  • Löptien H (1979a) Untersuchungen zur Bestimmung der Geschlechtschromosomen beim Spinat. Z Planzenzücht 82: 90–92

    Google Scholar 

  • Löptien H (1979b) Identification of the sex chromosome pair in Asparagus (Asparagus officina-lis L.). Z Pflanzenzücht 82: 162–173

    Google Scholar 

  • Louis JP (1989) Genes for the regulation of sex differentiation and male fertility in Mercurialis annua L. The Journal of Heredity 80: 104–111

    Google Scholar 

  • Malepszy S Niemirowicz-Szczytt K (1991) Sex determination in cucumber (Cucumis sativus) as a model for molecular biology. Plant Sci 80: 39–47

    Article  Google Scholar 

  • Mandava NB (1988) Plant growth promoting brassinosteroids. Ann Rev Plant Physiol Plant Mol Biol 39: 23–52

    Article  CAS  Google Scholar 

  • Mather K (1949) Genetics of dioecy and monoecy in Ecballium. Nature 163: 926

    Article  PubMed  CAS  Google Scholar 

  • Matsugana S, Hizume M, Kawano S, Kuroiwa T (1994) Cytological analysis in Melandrium album:Genome size, chromosome size and fluorescence in situ hybridization. Cytologia 59: 135–141

    Article  Google Scholar 

  • Migeon BJ (1994) X-chromosome inactivation: molecular mechanisms and genetic consequences. Trends Genet. 10: 230

    Article  PubMed  CAS  Google Scholar 

  • Moneger F, Smart CJ, Leaver CJ (1994) Nuclear restoration of cytoplasmic male sterility in sunflower is associated with tissue-specific regulation of a novel mitochondrial gene. EMBO J 13: 8–17

    CAS  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1: 2–9

    Article  Google Scholar 

  • Parker JS (1990) Sex chromosomes and sexual differentiation in flowering plants. Chromosomes Today 10: 187–198

    CAS  Google Scholar 

  • Parker JS, Clark MS (1991) Dosage sex-chromosome systems in plants. Plant Sci 80:79–92 Parkhurst SM, Meneely

    Google Scholar 

  • PM (1994) Sex determination and dosage compensation: lessons from flies and worms. Science 264: 924–932

    Article  Google Scholar 

  • Peterson CE Andher ED (1960) Induction of staminate flowers on gynoecious cucumbers with gibberellin A3. Science 131: 1673–1676

    Article  PubMed  CAS  Google Scholar 

  • Phinney BO (1956) Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proc Natl Acad Sci USA 42: 185–189

    Article  PubMed  CAS  Google Scholar 

  • Phinney BO (1961) Dwarfing genes in Zea mays and their relation to the gibberellins. In: Klein, RJ (ed) Plant growth regulation. Iowa State University Press, Ames, Iowa, pp 489–501

    Google Scholar 

  • Phinney PO, Spray CR (1982) Chemical genetics and the gibberellin biosynthetic pathway in Zeamays L. In: Waring PF (ed) Plant Growth Substances. Academic Press, London, pp 101–110

    Google Scholar 

  • Pierce LK, Wehner TC (1990) Review of genes and linkage groups in cucumber. Hort Sci 25, 605–615

    CAS  Google Scholar 

  • Robinson RW, Munger HM, Whitaker TW, Bohn GW (1976) Genes of the Cucurbitaceae. Hort Sci 11: 554–568

    Google Scholar 

  • Rood SB, Pharis RP, Major DJ (1980) Changes of endogenous gibberellin-like substances with sex reversal of the apical influence of corn. Plant Physiol 66: 793–796

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Medrano LJ, Meyerowitz EM (1995) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378: 199–203

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RJ, Veit B, Mandel MA, Mena M, Hake S, Yanofsky MF (1993) Identification and molecular characterization of ZAGI, the maize homologue of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5: 729–737

    PubMed  CAS  Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931–936

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf A-M, Lovell-Badge R, Goodfellow P (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346: 240–244

    Article  PubMed  CAS  Google Scholar 

  • Spray C, Phinney BO, Gaskin P, Gilmour SI, MacMillan J (1984) Internode length in Zea mays L. The dwarf-I mutation controls the 3-hydroxylation of gibberellin A20 to gibberellin Al. Planta 160: 464–468

    Article  CAS  Google Scholar 

  • Van Doren M, Ellis HM, Posakony JW (1991) The Drosophila extramacrochaetae protein antagonizes sequence-specific DNA binding by daughterless achaete-scute protein complexes. Cell 113: 245–255

    Article  Google Scholar 

  • Van Nigtevecht G (1966) Genetic studies in dioecious Melandrium. II. Sex determination in Melandrium album and Melandrium dioicum. Genetica 37: 307–344

    Article  Google Scholar 

  • Veit B, Schmidt RJ, Hake S, Yanofsky MF (1993) Maize floral development: new genes and old mutants. Plant Cell 5: 1205–1215

    PubMed  Google Scholar 

  • Vyskot B, Araya A, Veuskens J, Negrutiu I, Mouras A (1993) DNA methylation of sex chromosomes in a dioecious plant, Melandrium album. Mol Gen Genet 239: 219–224

    PubMed  CAS  Google Scholar 

  • Warmke HE (1946) Sex determination and sex balance in Melandrium. Am J Bot 33: 648–660

    Article  Google Scholar 

  • Westergaard M (1940) Studies on cytology and sex determination in polyploid forms of Melandrium album. Dan Bot Ark 5: 1–131

    Google Scholar 

  • Westergaard M (1946a) Aberrant Y chromosomes and sex expression in Melandrium album. Hereditas 32: 419–443

    Article  PubMed  CAS  Google Scholar 

  • Westergaard M (1946b) Structural changes of the Y chromosome in the offspring of polyploid Melandrium. Hereditas 32: 60–64

    Article  PubMed  CAS  Google Scholar 

  • Westergaard M (1948) The relation between chromosome constitution and sex in the offspring of triploid Melandrium. Hereditas 34: 25–279

    Google Scholar 

  • Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. Adv Genet 9: 217–281

    Article  PubMed  CAS  Google Scholar 

  • Wilby AS, Parker JS (1986) Continuous variation in the Y chromosome structure of Rumex acetosa. Heredity 57: 247–254

    Article  Google Scholar 

  • Yamamoto, Y (1938) Karyogenetische Untersuchungen bei der Gattung Rumex VI. Geschlechtsbestimmung bei eu-und aneuploiden Pflanzen von Rumex acetosa L. Kyoto Univ Mem Coll Agric 43: 1–59

    Google Scholar 

  • Yampolsky C Yampolsky H (1922) Distribution of the sex forms in the phanerogamic flora. Bibl Genet 3: 1–62

    Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldman KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35–39

    Article  PubMed  CAS  Google Scholar 

  • Ye D, Installe P, Ciupercescu D, Veuskens J, Wu Y, Salesses G, Jacobs M, Negrutiu I (1990) Sex determination in the dioecious Melandrium 1. First lessons from androgenic haploids. Sex Plant Reprod 3: 179–186

    Google Scholar 

  • Yin T, Quinn JA (1992) A mechanistic model of a single hormone regulating both sexes in flowering plants. Bull Torrey Bot Club 119: 431–441

    Article  Google Scholar 

  • Yin, T Quinn JA (1995a) Tests of a mechanistic model of one hormone regulating both sexes in Buchloe dactyloides ( Poaceae ). Am J Bot 82: 745–751

    Google Scholar 

  • Yin T, Quinn JA (1995b) Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucubitacea). Am J. Bot. 82, 1537–1546

    Google Scholar 

  • Younger-Shepard S, Vaessin H, Bier E, Jan LY, Jan YN (1992) deadpan, an essential pan-neural gene encoding an HLH protein acts as a denominator in Drosophila sex determination. Cell 70: 911–922

    Google Scholar 

  • Zwingman T, Erickson RP, Boyer T, Ao A (1993) Transcription of the sex-determining region genes Sry and Zfy in the mouse preimplantation embryo. Proc Natl Acad Sci USA 90: 814–817

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grant, S.R. (1999). Genetics of Gender Dimorphism in Higher Plants. In: Geber, M.A., Dawson, T.E., Delph, L.F. (eds) Gender and Sexual Dimorphism in Flowering Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03908-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03908-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08424-9

  • Online ISBN: 978-3-662-03908-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics