Working with Finite Groups

  • Hans Cuypers
  • Leonard H. Soicher
  • Hans Sterk
Part of the Algorithms and Computation in Mathematics book series (AACIM, volume 4)

Abstract

Two common ways to describe groups are to present them by generators and relations or as automorphism groups of algebraic, geometric or combinatorial structures. (Think of linear groups acting on vector spaces, symmetry groups of regular polytopes, Galois groups etc.) An automorphism group of such a structure may also be considered to be a subgroup of the group of all permutations of the elements of that structure. Automorphism groups can thus be seen as permutation groups. Permutation groups are groups consisting of permutations of a set with composition of permutations as group multiplication. So, for example, we may view linear groups as permutation groups on the set of vectors of the underlying vector space (but this may not be the most efficient approach). The Todd-Coxeter coset enumeration method provides, among other things, a link between groups given by generators and relations on the one hand and permutation groups on the other.

Keywords

Stein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Babai (1996): Randomization in group algorithms: Conceptual questions, pp. 1–17 in Groups and Computation II (L. Finkelstein and W.M. Kantor, eds), DIMACS Series in Discrete Mathematics and Theoretical Computer Science 28, American Math. Soc.Google Scholar
  2. 2.
    W. Bosma and J. Cannon (1992): Structural computation in finite permutation groups, CWI Quarterly 5 (2) 127–160.MathSciNetMATHGoogle Scholar
  3. 3.
    W. Bosma, J. Cannon, and G. Matthews (1994): Programming with algebraic structures: the design of the Magma language, pp. 52–57 in Proceedings of ISSAC ’94, Assoc. Comp. Mach.Google Scholar
  4. 4.
    G. Butler (1991): Fundamental algorithms for permutation groups, Lecture Notes in Computer Science 559, Springer-Verlag, Berlin Heidelberg New York.MATHCrossRefGoogle Scholar
  5. 5.
    J. J. Cannon, L. A. Dimino, G. Havas, and J. M. Watson (1973): Implementation and analysis of the Todd-Coxeter algorithm, Math. Comp. 27, 463–490.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    B.W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and S. M. Watt (1992): First Leaves: A Tutorial Introduction to Maple V, Springer-Verlag, Berlin Heidelberg New York.MATHCrossRefGoogle Scholar
  7. 7.
    R. H. Crowell and R. H. Fox (1977): Introduction to Knot Theory, Graduate Texts in Mathematics 57, Springer-Verlag, Berlin Heidelberg New York.MATHCrossRefGoogle Scholar
  8. 8.
    L. Finkelstein and W. M. Kantor (editors) (1993): Groups and Computation, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 11, American Math. Soc.MATHGoogle Scholar
  9. 9.
    L. Finkelstein and W. M. Kantor (editors) (1996): Groups and Computation II, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 28, American Math. Soc.Google Scholar
  10. 10.
    D. L. Johnson (1990): Presentations of Groups, Cambridge University Press, Cambridge.MATHGoogle Scholar
  11. 11.
    W. M. Kantor (1985): Sylow’s theorem in polynomial time, J. Comput. System Sci. 30, 359–394.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    W. M. Kantor and D.E. Taylor (1988): Polynomial-time versions of Sylow’s theorem, J. Algorithms 9, 1–17.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    J. Leech (1984): Coset enumeration, pp. 3–18 in Computational Group Theory (M.D. Atkinson, ed.), Academic Press, London.Google Scholar
  14. 14.
    J. S. Leon (1980): On an algorithm for finding a base and strong generating set for a group given by generating permutations, Math. Comp. 35, 941–974.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    J.S. Leon (1991): Permutation group algorithms based on partitions, I: theory and algorithms, J. Symb. Comput. 12, 533–583.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    J. S. Leon (1996): Partitions, refinements, and permutation group computation, pp. 123–158 in Groups and Computation II (L. Finkelstein and W.M. Kantor, eds), DIMACS Series in Discrete Mathematics and Theoretical Computer Science 28, American Math. Soc.Google Scholar
  17. 17.
    S.A. Linton (1991): Double coset enumeration, J. Symb. Comput. 12, 415–426.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    S.A. Linton (1991): Constructing matrix representations of finitely presented groups, J. Symb. Comput. 12, 427–438.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    E. M. Luks (1993): Permutation groups and polynomial-time computation, pp. 139–175 in Groups and Computation, (L. Finkelstein and W.M. Kantor, eds), DIMACS Series in Discrete Mathematics and Theoretical Computer Science 11, American Math. Soc.Google Scholar
  20. 20.
    N. S. Mendelsohn (1965): An algorithmic solution for a word problem in group theory, Canad. J. Math. 16, 509–516.MathSciNetMATHCrossRefGoogle Scholar
  21. 20a.
    N. S. Mendelsohn (1965): An algorithmic solution for a word problem in group theory, Correction, Canad. J. Math. 17, 505.MathSciNetCrossRefGoogle Scholar
  22. 21.
    P. Morje (1996): On nearly linear time algorithms for Sylow subgroups of small-base permutation groups, pp. 257–272 in Groups and Computation II (L. Finkelstein and W.M. Kantor, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science 28, American Math. Soc.Google Scholar
  23. 22.
    J. Neubüser (1982): An elementary introduction to coset table methods in computational group theory, pp. 1–45 in Groups — St. Andrews 1981 (C.M. Campbell and E.F. Robertson, eds), LMS Lecture Notes 71, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  24. 23.
    P. M. Neumann, G. A. Stoy, and E. C. Thompson (1994): Groups and Geometry, Oxford University Press, Oxford.MATHGoogle Scholar
  25. 24.
    M. Schönert, et al. (1994): GAP — Groups, Algorithms and Programming, version 3, release 4, Lehrstuhl D für Mathematik, RWTH Aachen.Google Scholar
  26. 25.
    O. Schreier (1927): Die Untergruppen der freien Gruppen, Abh. Math. Sem. Univ. Hamburg 5, 161–183.MATHCrossRefGoogle Scholar
  27. 26.
    C. C. Sims (1971): Computation with permutation groups, pp. 23–28 in Proceedings of the Second Symposium on Symbolic and Algebraic Manipulation (S.R. Petrick, ed.), Assoc. Comp. Mach.CrossRefGoogle Scholar
  28. 27.
    C.C. Sims (1971): Determining the conjugacy classes of a permutation group, pp. 191–195 in SIAM-AMS Proceedings 4, American Math. Soc.Google Scholar
  29. 28.
    C.C. Sims (1994): Computation with Finitely Presented Groups, Cambridge University Press, Cambridge.MATHCrossRefGoogle Scholar
  30. 29.
    J.A. Todd and H.S.M. Coxeter (1936): A practical method for enumerating cosets of a finite abstract group, Proc. Edinburgh Math. Soc. 5, 26–34.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Hans Cuypers
  • Leonard H. Soicher
  • Hans Sterk

There are no affiliations available

Personalised recommendations