Skip to main content

Gröbner Bases for Decoding

  • Chapter

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 4))

Abstract

From the previous chapter one might get the impression that the theory of error-correcting codes is equivalent to the theory of finite geometry or arrangements over finite fields. This is not true from a practical point of view. A code is useless without a decoding algorithm. For engineers the total performance of the encoding and decoding scheme is important.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arimoto (1961): Encoding and decoding of p-ary group codes and the correction system, (in Japanese) Inform. Processing in Japan 2, 320–325.

    MathSciNet  Google Scholar 

  2. A. Barg (1993): At the dawn of the theory of codes, Math. Intelligencer 15, 20–27.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Barg: Complexity issues in coding theory, to appear in Handbook of Coding Theory, (V.S. Pless, W.C. Huffman and R.A. Brualdi eds.), Elsevier.

    Google Scholar 

  4. E. R. Berlekamp (1984): Algebraic Coding Theory, Aegon Park Press, Laguna Hills CA.

    Google Scholar 

  5. E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg (1978): On the inherent intractibility of certain coding problems, IEEE Trans. Inform. Theory 24, 384–386.

    Article  MATH  Google Scholar 

  6. R. E. Blahut (1983): Theory and Practice of Error Control Codes, Addison-Wesley, Reading.

    MATH  Google Scholar 

  7. R. E. Blahut (1985): Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading.

    MATH  Google Scholar 

  8. R. E. Blahut, Introduction to Algebraic Coding, book in prepartation.

    Google Scholar 

  9. A. Brinton Cooper III (1990): Direct solution of BCH decoding equations, Communication, Control and Signal Processing, Elsevier Sc. Publ., 281–286.

    Google Scholar 

  10. A. Brinton Cooper III (1991): Finding BCH error locator polynomials in one step, Electronic Letters 27, 2090–2091.

    Article  MATH  Google Scholar 

  11. X. Chen, I.S. Reed, T. Helleseth, and T. K. Truong (1994): Algebraic decoding of cyclic codes: a polynomial point of view, Contemporary Math. 168, 15–22.

    Article  MathSciNet  Google Scholar 

  12. X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong (1994): Use of Gröbner bases to decode binary cyclic codes up to the true minimum distance, IEEE Trans. Inform. Theory 40, 1654–1661.

    Article  MathSciNet  MATH  Google Scholar 

  13. X. Chen, I.S. Reed, T. Helleseth, and T. K. Truong (1994): General principles for the algebraic decoding of cyclic codes, IEEE Trans. Inform. Theory 40, 1661–1663.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. L. Dornstetter (1987): On the equivalence of Berlekamp’s and Euclid’s algorithm, IEEE Trans. Inform. Theory 33, 428–431.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. C. Faugère, P. Gianni, D. Lazard, and T. Mora (1993): Efficient computation of zero-dimensional Gröbner bases by a change of ordering, Journ. Symb. Comp. 16, 329–344.

    Article  MATH  Google Scholar 

  16. G.-L. Feng and T.R.N. Rao (1993): Decoding of algebraic geometric codes up to the designed minimum distance, IEEE Trans. Inform. Theory 39, 37–45.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Fitzgerald (1996): Applications of Gröbner bases to linear codes, Ph.D. Thesis, Louisiana State Univ.

    Google Scholar 

  18. J. Fitzgerald and R. F. Lax (1998): Decoding affine variety codes using Gröbner bases, Designs, Codes and Cryptography 13, 147–158.

    Article  MathSciNet  MATH  Google Scholar 

  19. G.D. Forney Jr. (1965): On decoding BCH codes, IEEE Trans. Inform. Theory 11, 549–557.

    Article  MathSciNet  MATH  Google Scholar 

  20. D.C. Gorenstein and N. Zierler (1961): A class of error-correcting codes in p m symbols, Journ. SIAM 9, 207–214.

    MathSciNet  MATH  Google Scholar 

  21. T. Hoholdt, J.H. van Lint, and R. Pellikaan, Algebraic geometry codes, to appear in Handbook of Coding Theory, (V.S. Pless, W.C. Huffman and R.A. Brualdi eds.), Elsevier.

    Google Scholar 

  22. T. Høholdt and R. Pellikaan (1995): On decoding algebraic-geometric codes, IEEE Trans. Inform. Theory 41, 1589–1614.

    Article  MathSciNet  Google Scholar 

  23. J. Justesen, K. J. Larsen, H. Elbrond Jensen, A. Havemose, and T. Hoholdt (1989): Construction and decoding of a class of algebraic geometric codes, IEEE Trans. Inform. Theory 35, 811–821.

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Klove and V. I. Korzhik (1995): Error Detecting Codes, Kluwer Acad. PubL, Dordrecht.

    Book  Google Scholar 

  25. P. Loustaunau and E.V. York (1997): On the decoding of cyclic codes using Gröbner bases, AAECC 8, 469–483.

    Article  MathSciNet  MATH  Google Scholar 

  26. F.J. MacWilliams and N.J.A. Sloane (1977): The Theory of Error-Correcting Codes, North-Holland Math. Library 16, North-Holland, Amsterdam.

    MATH  Google Scholar 

  27. J.L. Massey (1969): Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory 15, 122–127.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Maucher and R. Kötter (1996): Decoding constacyclic codes in Lee- and Mannheim metric by the use of Gröbner bases, preprint.

    Google Scholar 

  29. R. Pellikaan (1993): On the efficient decoding of algebraic-geometric codes, pp. 231–253 in Proceedings of Eurocode 92, CISM Courses and Lectures 339, Springer-Verlag, Wien New York.

    Google Scholar 

  30. W. T. Penzhorn (1993): On the fast decoding of binary BCH codes, pp. 103 in Proc. IEEE Int. Symp. Inform. Theory, San Antonio.

    Google Scholar 

  31. W. W. Peterson (1960): Encoding and error-correction procedures for the Bose-Chauduri codes, IRE Trans. Inform. Theory 6, 459–470.

    Article  Google Scholar 

  32. W.W. Peterson and E.J. Weldon (1977): Error-Correcting Codes, MIT Press, Cambridge.

    Google Scholar 

  33. K. Saints and C. Heegard (1995): Algebraic-geometric codes and multidimensional cyclic codes: A unified theory and algorithms for decoding using Gröbner bases, IEEE Trans. Inform. Theory 41, 1733–1751.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Sakata (1981): On determining the independent point set for doubly periodic arrays and encoding two-dimensional cyclic codes and their duals, IEEE Trans. Inform. Theory 27, 556–565.

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Sakata (1988): Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array, Journal of Symbolic Computation 5, 321–337.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Sakata (1990): Extension of the Berlekamp-Massey algorithm to N dimensions, Information and Computation 84, 207–239.

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa (1975): A method for solving the key equation for decoding Goppa codes, Information and Control 27, 87–99, 1975.

    Article  MathSciNet  Google Scholar 

  38. H.-J. Weber (1994): Algebraische Algorithmen zur Dekodierung zyklischer Codes, Master’s Thesis, Univ. Dortmund.

    Google Scholar 

  39. D-J. Xin (1993): New approach to decoding Reed-Solomon codes based on generalized rational interpolation, pp. 219–223 in Proc. Sixth Swedish-Russian International Workshop Inform. Trans.

    Google Scholar 

  40. D-J. Xin (1994): Homogeneous interpolation problem and key equation for decoding Reed-Solomon codes, Science in China (Series A) 37, No. 11.

    Google Scholar 

  41. D-J. Xin (1995): Extension of the Welch-Berlekamp theorem and universal strategy of decoding algorithm beyond BCH bound, Science in China (Series A) 38, No. 11.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Boer, M., Pellikaan, R. (1999). Gröbner Bases for Decoding. In: Cohen, A.M., Cuypers, H., Sterk, H. (eds) Some Tapas of Computer Algebra. Algorithms and Computation in Mathematics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03891-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03891-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08335-8

  • Online ISBN: 978-3-662-03891-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics