Skip to main content

Gröbner Bases for Codes

  • Chapter
Some Tapas of Computer Algebra

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 4))

Abstract

Coding theory deals with the following topics:

  • Cryptography or cryptology. Transmission of secret messages or electronic money, eavesdropping, intruders, authentication and privacy.

  • Source coding or data compression. Most data have redundant information, and can be compressed, to save space or to speed up the transmission.

  • Error-correcting codes. If the channel is noisy one adds redundant information in a clever way to correct a corrupted message.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Augot (1996): Description of minimum weight codewords of cyclic codes by algebraic systems, Finite Fields and their Appl. 2, 138–152.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Augot (1994): Algebraic characterization of minimum codewords of cyclic codes, pp. 46 in Proc. IEEE ISIT’94, Trondheim, Norway, June 1994.

    Google Scholar 

  3. D. Augot (1995): Newton’s identities for minimum codewords of a family of alternant codes, preprint.

    Google Scholar 

  4. D. Augot, P. Charpin, and N. Sendrier (1990): Weights of some binary cyclic codewords throughout Newton’s identities, pp. 65–75 in Eurocode ‘90, Lecture Notes Comp. Sc. 514, Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  5. D. Augot, P. Charpin, and N. Sendrier (1992): Studying the locator polynomial of minimum weight codewords of BCH codes, IEEE Trans. Inform. Theory 38, 960–973.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Baart, J. Cramwinckel, and E. Roijackers (1994): GUAVA, a coding theory package, Delft Univ. Technology.

    Google Scholar 

  7. A. Barg: Complexity issues in coding theory, to appear in Handbook of Coding Theory, (V.S. Pless, W.C. Huffman and R.A. Brualdi eds.), Elsevier.

    Google Scholar 

  8. A. Barg and I. Dumer (1992): On computing the weight spectrum of cyclic codes, IEEE Trans. Inform. Theory 38, 1382–1386.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Becker and V. Weispfenning (1993): Gröbner Bases; a Computational Approach to Commutative Algebra, Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  10. M. Becker and J. Cramwinckel (1995): Implementation of an algorithm for the weight distribution of block codes, Modelleringcolloquium, Eindhoven Univ. Technology.

    Google Scholar 

  11. E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg (1978): On the inherent intractibility of certain coding problems, IEEE Trans. Inform. Theory 24, 384–386.

    Article  MATH  Google Scholar 

  12. A. E. Brouwer, http://www.win.tue.nl/win/math.dw.voorlincod.html

  13. A. E. Brouwer and T. Verhoeff (1993): An updated table of minimum-distance bounds for binary linear codes, IEEE Trans. Inform. Theory 39, 662–677.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Cox, J. Little, and D. O’Shea (1992): Ideals, Varieties and Algorithms; An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  15. G.-L. Feng and T.R.N. Rao (1994): A simple approach for construction of algebraic-geometric codes from affine plane curves, IEEE Trans. Inform. Theory 40, 1003–1012.

    Article  MathSciNet  MATH  Google Scholar 

  16. G.-L. Feng and T.R.N. Rao (1995): Improved geometric Goppa codes Part I, Basic Theory, IEEE Trans. Inform. Theory 41, 1678–1693.

    Article  MathSciNet  MATH  Google Scholar 

  17. G.-L. Feng, V. Wei, T.R.N. Rao, and K. K. Tzeng (1994): Simplified understanding and efficient decoding of a class of algebraic-geometric codes, IEEE Trans. Inform. Theory 40, 981–1002.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Schönert et al. (1994): GAP — Groups, Algorithms and Programming, version 3, release 4, Lehrstuhl D für Mathematik, RWTH Aachen.

    Google Scholar 

  19. V. D. Goppa (1977): Codes associated with divisors, Probl. Peredachi Inform. 13 (1) 33–39. Translation: Probl. Inform. Transmission 13, 22–26.

    MathSciNet  MATH  Google Scholar 

  20. V.D. Goppa (1981): Codes on algebraic curves, Dokl. Akad. Nauk SSSR 259, 1289–1290. Translation: Soviet Math. Dokl. 24, 170–172.

    MathSciNet  Google Scholar 

  21. V.D. Goppa (1982): Algebraico-geometric codes, Izv. Akad. Nauk SSSR 46. Translation: Math. USSR Izvestija 21, 75–91, 1983.

    Google Scholar 

  22. V. D. Goppa (1984): Codes and information, Usp. Mat. Nauk 39, No. 1, 77–120. Translation: Russian Math. Surveys 39, 87–141, 1984.

    MathSciNet  Google Scholar 

  23. V.D. Goppa (1991): Geometry and codes, Mathematics and its Applications 24, Kluwer Acad. Publ., Dordrecht.

    Google Scholar 

  24. P. Heijnen and R. Pellikaan (1998): Geneneralized Hamming weights of q-ary Reed-Muller codes, IEEE Trans. Inform. Theory 44, 181–196.

    Article  MathSciNet  MATH  Google Scholar 

  25. J.W. P. Hirschfeld and J. A. Thas (1991): General Galois Geometries, Oxford University Press, Oxford.

    MATH  Google Scholar 

  26. T. Hoholdt, J. H. van Lint, and R. Pellikaan: Algebraic geometry codes, to appear in Handbook of Coding Theory, (V.S. Pless, W.C. Huffman and R.A. Brualdi eds.), Elsevier.

    Google Scholar 

  27. R. D. Jenks and R. S. Sutor (1992): Axiom. The Scientific Computation System, Springer-Verlag, New York Berlin Heidelberg.

    MATH  Google Scholar 

  28. G.L. Katsman and M. A. Tsfasman (1987): Spectra of algebraic-geometric codes, Probl. Peredachi Inform 23 (4) 19–34. Translation: Probl. Inform. Transmission 23, 262–275.

    MathSciNet  MATH  Google Scholar 

  29. C. Kirfel and R. Pellikaan (1995): The minimum distance of codes in an array coming from telescopic semigroups, IEEE Trans. Inform. Theory 41, 1720–1732.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Leon (1982): Computing the automorphism groups of error-correcting codes, IEEE Trans. Inform. Theory 28, 496–511.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. H. van Lint (1982): Introduction to Coding Theory, Graduate Texts in Math. 86, Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  32. F.J. MacWilliams and N.J.A. Sloane (1977): The Theory of Error-Correcting Codes, North-Holland Math. Library 16, North-Holland, Amsterdam.

    MATH  Google Scholar 

  33. R. Pellikaan (1996): The shift bound for cyclic, Reed-Muller and geometric Goppa codes, pp. 155–175 in Proceedings AGCT-4, Luminy 1993, de Gruyter, Berlin.

    Google Scholar 

  34. R. Pellikaan (1996): On the existence of order functions, submitted to the proceedings of the Second Shanghai Conference on Designs, Codes and Finte Geometry.

    Google Scholar 

  35. J. Simonis (1994): GUAVA: A computer algebra package for coding theory, pp. 165–166 in Proc Fourth Int. Workshop Algebraic Combinatorial Coding Theory, Novgorod, Russia, Sept. 11–17, 1994.

    Google Scholar 

  36. Ma. Stillman, Mi. Stillman, and D. Bayer, Macaulay User Manual.

    Google Scholar 

  37. H. Stichtenoth (1993): Algebraic Function Fields and Codes, Universitext, Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  38. M.A. Tsfasman and S. G. Vladut, (1991): Algebraic-geometric codes, Mathematics and its Application 58, Kluwer Acad. Publ., Dordrecht.

    Book  MATH  Google Scholar 

  39. A. Vardy (1997): The intractibility of computing the minimum distance of a code, IEEE Trans. Inform. Theory 43, 1757–1766.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Boer, M., Pellikaan, R. (1999). Gröbner Bases for Codes. In: Cohen, A.M., Cuypers, H., Sterk, H. (eds) Some Tapas of Computer Algebra. Algorithms and Computation in Mathematics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03891-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03891-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08335-8

  • Online ISBN: 978-3-662-03891-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics