Gröbner Bases, an Introduction

  • Arjeh M. Cohen
Part of the Algorithms and Computation in Mathematics book series (AACIM, volume 4)


Gröbner bases form a core topic of computer algebra and are needed for various subsequent chapters of this book. There are several ways of looking at the famous Buchberger algorithm for constructing Gröbner bases. In this section, we give three interpretations. In the following sections, the Buchberger algorithm and its role according to each interpretation will be discussed in detail.


Finite Subset Lexicographic Order Polynomial System Reduction Order Quotient Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.W. Adams and P. Loustaunau (1994): An Introduction to Gröbner Bases, Graduate Studies in Math. 3, Amer. Math. Soc.MATHGoogle Scholar
  2. 2.
    M. F. Atiyah and I. G. Macdonald (1969): Introduction to Commutative Algebra, Addison-Wesley, Reading, MA.MATHGoogle Scholar
  3. 3.
    M. Artin (1991): Algebra, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  4. 4.
    T. Becker and V. Weispfenning (1993): Gröbner Bases, Graduate Texts in Mathematics 141, Springer-Verlag, New York Berl in Heidelberg.Google Scholar
  5. 5.
    B. Buchberger (1965): Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph. D. Thesis, Innsbruck. (An English translation of the journal version of part of this thesis can be found as an appendix in [8].)Google Scholar
  6. 6.
    B. Buchberger (1985): Gröbner bases: an algorithmic method in polynomial ideal theory, pp. 184–232 in: Recent Trends in Multidimensional System Theory, N.K. Bose (ed.), Reidel.CrossRefGoogle Scholar
  7. 7.
    B. Buchberger (1987): Applications of Gröbner bases in non-linear computational geometry, pp. 52–80 in: Trends in Computer Algebra, Lecture Notes in Computer Science 296, Springer-Verlag, Berlin Heidelberg New York.Google Scholar
  8. 8.
    B. Buchberger and F. Winkler (eds.) (1998): Gröbner bases and applications, London Math. Soc. Lecture Note Series 251, Cambridge University Press, Cambridge.Google Scholar
  9. 9.
    L. A. Bokut and P. Malcolmson (1996): Gröbner-Shirshov bases for quantum enveloping algebras, Israel J. Math. 96, 77–113.MathSciNetCrossRefGoogle Scholar
  10. 10.
    A.M. Cohen and R. H. Cushman (1993): Gröbner bases in standard monomial theory, pp. 41–60 in: Computational Algebraic Geometry, eds.: F. Eysette and A. Galligo, Progress in Math. 109, Birkhäuser.CrossRefGoogle Scholar
  11. 11.
    D. Cox, J. Little, and D. O’Shea (1992): Ideals, Varieties, and Algorithms, Springer-Verlag, Berlin Heidelberg New York.MATHGoogle Scholar
  12. 12.
    D. Cox and B. Sturmfels (eds.) (1998): Applications of Computational Algebraic Geometry, Proceedings of Symposia in Applied Math. 53, Amer. Math. Soc, Providence, R.I.MATHGoogle Scholar
  13. 13.
    C. De Concini, D. Eisenbud, and C. Procesi (1980): Hodge Algebras, Astérisque 91. Google Scholar
  14. 14.
    D. Eisenbud (1995): Commutative Algebra With a View Toward Algebraic Geometry, Graduate Texts in Math. 150, Springer-Verlag.MATHGoogle Scholar
  15. 15.
    Daniel R. Farkas, Feustel, C.D. Green, and L. Edward (1993): Synergy in the theories of Groebner bases and path algebras, Can. J. Math. 45, 727–739.MATHCrossRefGoogle Scholar
  16. 16.
    K. O. Geddes, S.R. Czapor, and G. Labahn (1992): Algorithms for Computer Algebra, Kluwer, Dordrecht.MATHCrossRefGoogle Scholar
  17. 17.
    Green, Edward L. (1993): An introduction to noncommutative Groebner bases, pp. 167–190 in: Computational Algebra. Papers from the Mid-Atlantic Algebra Conference, held at George Mason University, Fairfax, VA, USA, May 20–23, 1993. (K.G. Fischer and G. Klaus, eds.) New York: Dekker, Lect. Notes Pure Appl. Math. 151. Google Scholar
  18. 18.
    I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky (1994): Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Basel.MATHCrossRefGoogle Scholar
  19. 19.
    R. Hartshorne (1977): Algebraic Geometry, Graduate Texts in Mathematics 72, Springer-Verlag, New York Berl in Heidelberg.MATHGoogle Scholar
  20. 20.
    M. Kalkbrener (1989): Solving systems of polynomial equations by using Gröbner bases, pp. 282–293 in: Proc. EUROCAL ’87, Lecture Notes in Computer Science 378, Springer-Verlag, Berlin Heidelberg New York.Google Scholar
  21. 21.
    P. Lalonde and A. Ram (1995): Standard Lyndon bases of Lie algebras and enveloping algebras Trans. Amer. Math. Soc. 347, 1821–1830.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Mora, Teo (1994): An introduction to commutative and noncommutative Groebner bases, Theor. Comput. Sci. 134, 131–173.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    M. Pohst and H. Zassenhaus (1989): Algorithmic Algebraic Number Theory, Encyclopedia of Mathematics and its Applications 30, Cambridge University Press, Cambridge.Google Scholar
  24. 24.
    L. Robbiano (ed.) (1989): Computational aspects of commutative algebra (special issue of Journal of Symbolic Computation), Academic Press, London.Google Scholar
  25. 25.
    W. Trinks (1978): B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu lösen, J. Number Theory 10, 475–488.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    B. L. van der Waerden (1931): Moderne Algebra II, Springer-Verlag, Berlin Heidelberg New York.Google Scholar
  27. 27.
    A. Yu. Zharkov and Yu. A. Blinkov (1994): Program. Comput. Softw. 20, 34–36. Translation from Programmirovanie 1994, No. 1, 53–56.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Arjeh M. Cohen

There are no affiliations available

Personalised recommendations