Skip to main content

Adaptive Spectral Element Methods for Turbulence and Transition

  • Chapter

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 9))

Abstract

These notes present an introduction to the spectral element method with applications to fluid dynamics. The method is introduced for one-dimensional problems, followed by the discretization of the advection and diffusion operators in multi-dimensions, and efficient ways of dealing with these operators numerically. We also discuss the mortar element method, a technique for incorporating local mesh refinement using nonconforming elements; this is the foundation for adaptive methods. An adaptive strategy based on analyzing the local polynomial spectrum is presented and shown to give accurate solutions even for problems with weak singularities. Finally we describe techniques for integrating the incompressible Navier-Stokes equations, including methods for performing computational linear and nonlinear stability analysis of non-parallel and time-periodic flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover, 1970.

    Google Scholar 

  2. G. Anagnostou. Nonconforming Sliding Spectral Element Methods for the Unsteady Incompressible Navier-Stokes Equations. PhD thesis, M.I.T., February 1991.

    Google Scholar 

  3. B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schönung. Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech, 127: 473496, February 1983.

    Google Scholar 

  4. W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math, 9: 17–29, 1951.

    MathSciNet  MATH  Google Scholar 

  5. R. K. Avva. Computation of the turbulent flow over a backward-facing step using the zonal modeling approach. PhD thesis, Stanford University, 1988.

    Google Scholar 

  6. I. Babuska and M. Suri. The p and h-p versions of the finite element method: Basic principles and properties. Technical report, Institute for Physical Science and Technology, University of Maryland, 1992.

    Google Scholar 

  7. I. Babuska and M. Suri. The p and h-p versions of the finite element method, basic principles and properties. SIAM Review, 36 (4): 578–632, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Barkley, G. Gomes, and R. D. Henderson. Three-dimensional instability in flow over a backward-facing step. J. Fluid Mech,1998. Submitted for publication

    Google Scholar 

  9. D. Barkley and R. D. Henderson. Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech, 319, 1996.

    Google Scholar 

  10. D. Barkley and L. S. Tuckerman. Stability analysis of perturbed plane Couette flow. Phys. Fluids,1998. Submitted for publication

    Google Scholar 

  11. R. Barrett et al. Templates for the solution of linear systems: Building blocks for iterative methods. Text available at http://www.netlib.org, 1994.

    Google Scholar 

  12. C. Basdevant, M. Deville, P. Haldenwang, J. M. Lacroix, J. Quazzi, R. Peyret, P. Orlandi, and A. T. Patera. Spectral and finite difference solutions of the Burgers equation. Computers and Fluids, 14 (1): 23–41, 1986.

    Article  MATH  Google Scholar 

  13. E. R. Benton and G. N. Platzmann. A table of solutions of one-dimensional Burgers equation. Quart. Appl. Math, 29: 195–212, 1972.

    Google Scholar 

  14. C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain decomposition: the mortar element method. In H. Brezis and J. L. Lions, editors, Nonlinear Partial Differential Equations and Their Applications. Pitman and Wiley, 1992.

    Google Scholar 

  15. H. M. Blackburn and W. H. Melbourne. The effect of free-stream turbulence on sectional lift forces on a circular cylinder. J. Fluid Mech, 306: 267–292, 1996.

    Article  Google Scholar 

  16. O. Botella and R. Peyret. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids, 27 (4): 421–433, 1998.

    Article  MATH  Google Scholar 

  17. J. P. Boyd. Chebyshev and Fourier Spectral Methods. Springer-Verlag, 1989.

    Google Scholar 

  18. M. Brede, H. Eckelmann, and D. Rockwell. On secondary vortices in the cylinder wake. Phys. Fluids, 8 (8): 2117–2124, August 1996.

    Article  Google Scholar 

  19. J. M. Burgers. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech, 1: 171–199, 1948.

    Article  MathSciNet  Google Scholar 

  20. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods in Fluid Dynamics. Springer-Verlag, 2nd edition, 1988.

    Google Scholar 

  21. T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta Numerica, pages 61–143, 1994.

    Google Scholar 

  22. D. Chu, R. D. Henderson, and G. E. Karniadakis. Parallel spectral element-Fourier simulation of turbulent flow over riblet-mounted surfaces. Theoret. Comput. Fluid Dyn., 3: 219–229, 1992.

    MATH  Google Scholar 

  23. D. C. Chu and G. E. Karniadakis. A direct numerical simulation of laminar and turbulent flow over streamwise aligned riblets. J. Fluid Mech, 250: 1–42, 1993.

    Article  Google Scholar 

  24. W. Couzy and M. O. Deville. A fast Schur complement method for the spectral element discretization of the incompressible Navier-Stokes equations. J. Comput. Phys, 116: 135, 1995.

    Article  MATH  Google Scholar 

  25. P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press, Inc., 1984.

    MATH  Google Scholar 

  26. M. O. Deville and E. H. Mund. Chebyshev pseudospectral solution of second order elliptic equations with finite element preconditioning. J. Comput. Phys, 60: 517–533, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Dubiner. Spectral methods on triangles and other domains J. Sci. Comp, 6: 345, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. P. Johnston E. W, Adams. Effects of the separating shear-layer on the reattachment flow structure part 2: Reattachment length and wall shear-stress. Exp. Fluids, 6 (7): 493–499, 1988.

    MathSciNet  Google Scholar 

  29. B. A. Finlayson. The Method of Weighted Residuals and Variational Principles. Academic Press, New York, 1972.

    MATH  Google Scholar 

  30. A. Fortin, M. Jardak, J. J. Gervais, and R. Pierre. Localization of Hopf bifurcations in fluid flow problems. Int. J. Numer. Methods Fluids, 24 (11): 1185–1210, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. K. Gartling. A test problem for outflow boundary-conditions–flow over a backward-facing step. Int. J. Numer. Methods Fluids, 11 (7): 953–967, 1990.

    Article  Google Scholar 

  32. J. H. Gerrard. The wakes of cylindrical bluff bodies at low Reynolds number. Phil. Trans. R. Soc. Lond, 288: 351–382, 1978.

    Article  Google Scholar 

  33. G. G. Gornowicz. Continuous-field image-correlation velocimetry and its application to unsteady flow over an airfoil. Aeronautical Engineer’s Thesis, Caltech, 1997.

    Google Scholar 

  34. D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia, 1977.

    Book  MATH  Google Scholar 

  35. L. Greengard and J. Y. Lee. A direct adaptive Poisson solver of arbitrary order accuracy. J. Comput. Phys, 125: 415–424, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  36. P. M. Gresho, D. K. Gartling, J. R. Torczynski, K. A. Cliffe, K. H. Winters, T. J. Garratt, A. Spence, and J. W. Goodrich. Is the steady viscous incompressible 2dimensional flow over a backward-facing step at Re=800 stable? Int. J. Numer. Methods Fluids, 17 (6): 501–541, 1993.

    Article  MATH  Google Scholar 

  37. F. R. Hama. Three-dimensional vortex pattern behind a circular cylinder. J. Aeronaut. Sci, 24: 156, 1957.

    Google Scholar 

  38. M. Hammanche and M. Gharib. An experimental study of the parallel and oblique shedding in the wake from circular cylinders. J. Fluid Mech, 232: 567, 1991.

    Article  Google Scholar 

  39. R. D. Henderson. Unstructured Spectral Element Methods: Parallel Algorithms and Simulations. PhD thesis, Princeton University, June 1994.

    Google Scholar 

  40. R. D. Henderson. Details of the drag curve near the onset of vortex shedding. Phys. Fluids, 7 (9), September 1995.

    Google Scholar 

  41. R. D. Henderson. Nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech, 352: 65–112, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. D. Henderson and D. Barkley. Secondary instability in the wake of a circular cylinder. Phys. Fluids, 8 (6): 1683–1685, June 1996.

    Article  MATH  Google Scholar 

  43. R. D. Henderson and G. Karniadakis. Unstructured spectral element methods for simulation of turbulent flows. J. Comput. Phys, 122 (2): 191–217, December 1995.

    Article  MATH  Google Scholar 

  44. T. J. R. Hughes. The Finite Element Method. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.

    Google Scholar 

  45. L. Hung.Direct numerical simulation of turbulent flow over a backward-facing step. PhD thesis, Stanford University, 1995

    Google Scholar 

  46. L. Kaiktsis, G. E. Karniadakis, and S. A. Orszag. Onset of 3-dimensionality, equilibria, and early transition in flow over a backward-facing step. J. Fluid Mech, 231: 501–528, October 1991.

    Article  MATH  Google Scholar 

  47. L. Kaiktsis, G. E. Karniadakis, and S. A. Orszag. Unsteadiness and convective instabilities in 2-dimensional flow over a backward-facing step. J. Fluid Mech, 321: 157–187, 1996.

    Article  MATH  Google Scholar 

  48. G. E. Karniadakis, M. Israeli, and S. A. Orszag. High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys, 97 (2): 414, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  49. G. E. Karniadakis and G. S. Triantafyllou. Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. J. Fluid Mech, 238: 1, 1992.

    Article  MATH  Google Scholar 

  50. A. Knut. Large eddy simulation of turbulent confined coannular jets and turbulent flow over a backward-facing step (coaxial jet combustor). PhD thesis, Stanford University, 1995.

    Google Scholar 

  51. D. A. Kopriva. Compressible Navier-Stokes computations on unstructured quadrilateral grids by a staggered-grid Chebyshev method. AIAA 98–0133. In 36th Annual Aerospace Sciences Meeting and Exhibit, Reno, NV, January 1998.

    Google Scholar 

  52. D. A. Kopriva. Euler computations on unstructured quarilateral grids by a staggered-grid Chebyshev method. AIAA 98–0132. In 36th Annual Aerospace Sciences Meeting and Exhibit,Reno, NV, January 1998. AIAA.

    Google Scholar 

  53. D. Kosloff and H. Tal-Ezer. Modified Chebyshev pseudospectral methods with O(N -1 ) time step restriction. Technical Report Report 89–71, ICASE, 1989.

    Google Scholar 

  54. L. I. G. Kovasznay. Laminar flow behind a two dimensional grid. In Proc. Cambridge Phil. Society, 1948.

    Google Scholar 

  55. H. O. Kreiss. Numerical methods for solving time-dependent problems for partial differential equations. Technical report, University of Uppsala, Sweden, 1978.

    Google Scholar 

  56. D. Lisoski. Nominally 2-Dimensional Flow About a Normal Flat Plate. PhD thesis, California Institute of Technology, August 1993.

    Google Scholar 

  57. Y. Maday and A. T. Patera. Spectral element methods for the Navier-Stokes equations. ASME, State of the art surveys in Computational Mechanics, 1987.

    Google Scholar 

  58. H. Mansy, P.-M. Yang, and D. R. Williams. Quantitative measurements of three-dimensional structures in the wake of a circular cylinder. J. Fluid Mech, 270: 277–296, 1994.

    Article  Google Scholar 

  59. C. Mavriplis. Nonconforming Discretizations and a Posteriori Error Estimates for Adaptive Spectral Element Techniques. PhD thesis, M.I.T., February 1989.

    Google Scholar 

  60. C. Mavriplis. Adaptive mesh strategies for the spectral element method Com put. Methods Appl. Mech. Engrg, 116: 77–86, 1994.

    Google Scholar 

  61. S. Newhouse, D. Ruelle, and F. Takens. Occurence of strange axiom A attractors near quasi periodic flows in Tt`, m > 3. Commun. Math. Phys, 64: 35–40, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  62. B. R. Noack and H. Eckelmann. A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech, 270: 297–330, 1994.

    Article  MATH  Google Scholar 

  63. C. Norberg. Pressure forces on a circular cylinder in cross flow. In Proc. IUTAM Symp. on Bluff-Body Wakes, Göttingen, Germany, 1992. Additional photo provided by personal communication (1997).

    Google Scholar 

  64. J. T. Oden. Optimal hp-finite element methods. Technical Report TICOM Report 92–09, University of Texas at Austin, 1992.

    Google Scholar 

  65. S. A. Orszag and L. C. Kells. Transition to turbulence in plane Poiseuille flow and plane Couette flow. J. Fluid Mech, 96: 159, 1980.

    Article  MATH  Google Scholar 

  66. M. C. Rivara. Selective refinement/derefinement algorithms for sequences of nested triangulations. Int. J. Numer. Methods Eng, 28: 2889–2906, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  67. A. Roshko. On the development of turbulent wakes from vortex streets. Technical Report 1191, NACA, 1954.

    Google Scholar 

  68. D. Ruelle and F. Takens. On the nature of turbulence. Commun. Math. Phys, 20: 167–192, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  69. Y. Saad. Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices. Linear Alg. Appl, 34: 269–295, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  70. J. K. Salmon, M. S. Warren, and G. S. Winckelmans. Fast parallel tree codes for gravitational and fluid dynamical N-body problems. Int. J. Super. Appl, 8 (2), 1994.

    Google Scholar 

  71. M. F. Schatz, D. Barkley, and H. L. Swinney. Instability in a spatially periodic open flow. Phys. Fluids, 7 (2): 344–358, 1995.

    Article  Google Scholar 

  72. K. R. Shariff and R. D. Moser. Two-dimensional mesh embedding for B-spline methods. J. Comput. Phys, 145, 1998.

    Google Scholar 

  73. S. J. Sherwin. Hierarchical hp finite elements in hybrid domains. Finite Elements in Analysis and Design, 27: 109–119, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  74. S. J. Sherwin and G. E. Karniadakis. A new triangular and tetrahedral basis for high-order (hp) finite-element methods. Int. J. Numer. Methods,38(22):37753802, November 1995.

    Google Scholar 

  75. S. J. Sherwin and G. E. Karniadakis. A triangular spectral element method–applications to the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg, 123 (1–4): 189–229, June 1995.

    Article  MathSciNet  MATH  Google Scholar 

  76. G. Strang and G. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973.

    Google Scholar 

  77. B. Szabo and I. Babuska. Finite Element Analysis. John Wiley and Sons, 1991.

    Google Scholar 

  78. S. Szepessy and P. W. Bearman. Aspect ratio and end plate effects on vortex shedding from a circular cylinder. J. Fluid Mech, 234: 191–217, 1992.

    Article  Google Scholar 

  79. M. Thompson, K. Hourigan, and J. Sheridan Three-dimensional instabilities in the wake of a circular cylinder. Exp. Therm. Fluid Sci, 12: 190–196, 1996.

    Article  Google Scholar 

  80. A. Tomboulides, S. A. Orszag, and G. E. Karniadakis. Direct and large eddy simulations of axisymmetric wakes. AIAA 93–0546. In 31st Aerospace Sciences Meeting êi Exhibit, Reno, NV, January 1993.

    Google Scholar 

  81. L. S. Tuckerman and D. Barkley. Bifurcation analysis for timesteppers. IMA Preprint, April 1998.

    Google Scholar 

  82. G. H. Wannier. A contribution to the hydrodynamics of lubrication. Quart. Appl. Math, 8 (1), 1950.

    Google Scholar 

  83. C. Wieselsberger. Neuere Feststellungen über die Gesetze des Flüssigkeits-and Luftwiderstands. Phys. Z, 22: 321–238, 1921.

    Google Scholar 

  84. P. T. Williams and A. J. Baker. Numerical simulations of laminar-flow over a 3D backward-facing step. Int. J. Numer. Methods Fluids, 24 (11): 1159–1183, 1997.

    Article  MATH  Google Scholar 

  85. R. D. Williams. Voxel databases: a paradigm for parallelism with spatial structure. Concurrency, 4 (8): 619–636, 1992.

    Article  Google Scholar 

  86. C. H. K. Williamson. The existence of two stages in the transition to three dimensionality of a cylinder wake. Phys. Fluids, 31 (11): 3165–3168, 1988.

    Article  Google Scholar 

  87. C. H. K. Williamson. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech, 206: 579–627, 1989.

    Article  Google Scholar 

  88. C. H. K. Williamson. Mode A secondary instability in wake transition. Phys. Fluids, 8 (6): 1680–1682, June 1996.

    Article  Google Scholar 

  89. C. H. K. Williamson. Three-dimensional wake transition. J. Fluid Mech, 328: 345–407, 1996.

    Article  MATH  Google Scholar 

  90. J. Wu, J. Sheridan, M. C. Welsh, and K. Hourigan. Three-dimensional vortex structures in a cylinder wake. J. Fluid Mech, 312: 201–222, 1996.

    Article  MathSciNet  Google Scholar 

  91. T. A. Zang. On the rotational and skew-symmetric forms for incompressible flow simulations. App. Num. Math, 7: 27–40, 1991.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henderson, R.D. (1999). Adaptive Spectral Element Methods for Turbulence and Transition. In: Barth, T.J., Deconinck, H. (eds) High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03882-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03882-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03884-0

  • Online ISBN: 978-3-662-03882-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics