Optical Bistability

  • Pierre Meystre
  • Murray SargentIII


Chapter 7 gives the theory of a laser, which is a self-sustained oscillator consisting of an active medium in a Fabry-Perot or ring cavity. The laser output frequencies, imposed by the self-consistent laser equations, are compromises between the atomic and cavity natural frequencies. In this chapter, we discuss another situation involving a nonlinear medium in Fabry-Perot and ring cavities, but with two major changes: 1) the cavity output depends on an injected signal for its energy and output frequency, and 2) the medium is passive, i.e., it absorbs and/or provides an index change — but for two-level media, the upper state is not pumped. The name optical bistability comes from the characteristic of such systems that for a single input intensity, two (or more) stable output intensities are often possible, one large and one small. The system is like an electronic flip-flop except that it is all-optical.


Optical Bistability Input Intensity Cavity Field Cavity Transmission Dispersive Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Pierre Meystre
    • 1
  • Murray SargentIII
    • 2
  1. 1.Optical Science CenterUniversity of ArizonaTucsonUSA
  2. 2.Microsoft CorporationRedmontUSA

Personalised recommendations