Quantum—Classical Correspondence for Two-Level Atoms

  • Howard J. Carmichael
Part of the Texts and Monographs in Physics book series (TMP)


After our brief diversion we now return to the theme of Chaps. 3 and 4, namely, the transformation of an operator description for a quantum-optical system into the language of classical statistics. So far we have met methods that accomplish this task for systems described entirely in terms of harmonic oscillator creation and annihilation operators. At least we have seen that a Fokker-Planck equation description is possible for the damped harmonic oscillator, in a variety of versions defined by representations based on different operator orderings. We noted also that there is no guarantee that a system of interacting bosons can be described using a Fokker-Planck equation; although, as attested to by the example of the laser (Chap. 8), there are certainly nontrivial examples that can. The methods used to derive phase-space equations for systems of bosons can be generalized to the treatment of two-level atoms, or more generally, multi-level atomic systems. We now develop the representation for atomic states that is needed for our treatment of the laser.


Master Equation Quantum Fluctuation Permutational Symmetry Collective Operator Inversion State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    H. Haken, H. Risken, and W. Weidlich: Z. Physik 206, 355 (1967)ADSCrossRefGoogle Scholar
  2. 6.2
    H. Haken: Handbuch der Physik, Vol. XXV/2c, ed. by L. Genzel ( Springer-Verlag, Berlin, 1970 ) pp. 64–65Google Scholar
  3. 6.3
    W. H. Louisell: Quantum Statistical Properties of Radiation ( Wiley, New York, 1973 ) pp. 375–390Google Scholar
  4. 6.4
    C. W. Gardiner: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer-Verlag, Berlin, 1983) pp. 78, 79, 402Google Scholar
  5. 6.5
    A. Einstein: Phys. Z. 18, 121 (1917)Google Scholar
  6. 6.6
    M. Sargent III, M. O. Scully, and W. E. Lamb, Jr.: Laser Physics (Addison-Wesley, Reading, Massachusetts, 1974 ) pp. 20–23Google Scholar
  7. 6.7
    Min Xiao, H. J. Kimble, and H. J. Carmichael: Phys. Rev. A 35, 3832 (1987)ADSCrossRefGoogle Scholar
  8. 6.8
    Min Xiao, H. J. Kimble, and H. J. Carmichael: J. Opt. Soc. Am. B 4, 1546 (1987)Google Scholar
  9. 6.9
    R. R. Puri and S. V. Lawande: Phys. Lett. 72A, 200 (1979)CrossRefMathSciNetGoogle Scholar
  10. 6.10
    G. S. Agarwal: “Quantum Statistical Theories of Spontaneous Emission and their Relation to Other Approaches,” Springer Tracts in Modern Physics, Vol. 70 ( Springer-Verlag, Berlin, 1974 ) pp. 73–83Google Scholar
  11. 6.11
    H. J. Carmichael: J. Phys. B 13, 3551 (1980); Phys. Rev. Lett. 43, 1106 (1979)Google Scholar
  12. 6.12
    S. Sarkar and J. S. Satchell: Europhys. Lett. 3, 797 (1987)ADSCrossRefGoogle Scholar
  13. 6.13
    R. H. Dicke: Phys. Rev. 93, 99 (1954)ADSMATHCrossRefGoogle Scholar
  14. 6.14
    J. M. Radcliffe: J. Phys. A 4, 313 (1971)ADSCrossRefMathSciNetGoogle Scholar
  15. 6.15
    F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas: Phys. Rev. A 6, 2211 (1972)ADSCrossRefGoogle Scholar
  16. 6.16
    R. Bonifacio, P. Schwendimann, and F. Haake: Phys. Rev. A 4, 854 (1971)ADSCrossRefGoogle Scholar
  17. R. Bonifacio and L. A. Lugiato: Phys. Rev. A 12, 587 (1975)ADSCrossRefGoogle Scholar
  18. 6.17
    F. Haake and R. J. Glauber: Phys. Rev. A 5, 1457 (1972); Phys. Rev. A 13, 357 (1976)Google Scholar
  19. 6.18
    L. M. Narducci, C. A. Coulter, and C. M. Bowden: Phys. Rev. A 9, 829 (1974)ADSCrossRefGoogle Scholar
  20. 6.19
    J. P. Gordon: Phys. Rev. 161, 367 (1967)ADSCrossRefGoogle Scholar
  21. 6.20
    M. Gronchi and L. A. Lugiato: Lett. Nuovo Cimento 23, 593 (1978)CrossRefGoogle Scholar
  22. 6.21
    R. H. Lehmberg: Phys. Rev. A 2, 883 (1970)ADSCrossRefGoogle Scholar
  23. 6.22
    Reference [6.10] pp. 25–38Google Scholar
  24. 6.23
    E. Merzbacher: Quantum Mechanics ( Wiley, New York, 1961 ) pp. 421–426MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Howard J. Carmichael
    • 1
  1. 1.Department of PhysicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations