Quantum—Classical Correspondence for the Electromagnetic Field I: The Glauber—Sudarshan P Representation

  • Howard J. Carmichael
Chapter
Part of the Texts and Monographs in Physics book series (TMP)

Abstract

In Chap. 1 we developed a formalism to handle dissipative problems in quantum mechanics. The central result of this formalism was the operator master equation for the reduced density operator ρ of a dissipative system.

Keywords

Coherence Dition Ather 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 3.1
    H. Risken: The Fokker Planck Equation ( Springer-Verlag, Berlin, 1984 )MATHCrossRefGoogle Scholar
  2. 3.2
    E. P. Wigner: Phys. Rev. 40, 749 (1932)ADSCrossRefGoogle Scholar
  3. 3.3
    R. J. Glauber: Phys. Rev. 131, 2766 (1963)ADSCrossRefMathSciNetGoogle Scholar
  4. 3.4
    E. C. G. Sudarshan: Phys. Rev. Lett. 10, 277 (1963)ADSMATHCrossRefMathSciNetGoogle Scholar
  5. 3.5
    R. J. Glauber: Phys. Rev. Lett. 10, 84 (1963)ADSCrossRefMathSciNetGoogle Scholar
  6. 3.6
    R. J. Glauber: Phys. Rev. 130, 2529 (1963)ADSCrossRefMathSciNetGoogle Scholar
  7. 3.7
    W. H. Louisell: Quantum Statistical Properties of Radiation ( Wiley, New York, 1973 ) pp. 104–109Google Scholar
  8. 3.8
    M. Sargent III, M. O. Scully, and W. E. Lamb Jr.: Laser Physics (Addison-Wesley, Reading, Massachusetts, 1974 ) Chapter 15Google Scholar
  9. 3.9
    G. Temple: J. London Math. Soc. 28, 134 (1953)MATHCrossRefMathSciNetGoogle Scholar
  10. 3.10
    G. Temple: Proc. Roy. Soc. A 228, 175 (1955)ADSMATHCrossRefMathSciNetGoogle Scholar
  11. 3.11
    M. J. Lighthill: Fourier Analysis and Generalized Functions ( Cambridge University Press, Cambridge, 1960 )Google Scholar
  12. 3.12
    L. Schwartz: Théorie des Distributions, Vol. I/II (Hermann, Paris, 1950/51; 2nd edition 1957/1959)Google Scholar
  13. 3.13
    H. Bremermann: Distributions, Complex Variables, and Fourier Transforms (Addison-Wesley, Reading, Massachusetts, 1965 )Google Scholar
  14. 3.14
    J. R. Klauder and E. C. G. Sudarshan: Fundamentals of Quantum Optics ( Benjamin, New York, 1968 ) pp. 178–201Google Scholar
  15. 3.15
    H. M. Nussenzveig: Introduction to Quantum Optics, ( Gordon and Breach, London, 1973 ) pp. 54–68Google Scholar
  16. 3.16
    D. Zwillinger: Handbook of Differential Equations ( Academic Press, Boston, 1989 ) pp. 325–330MATHGoogle Scholar
  17. 3.17
    W. Feller: An Introduction to Probability Theory and its Applications, Vol. II (Wiley, New York, 1966; 2nd edition 1971) Chapter XVGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Howard J. Carmichael
    • 1
  1. 1.Department of PhysicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations