Quantum—Classical Correspondence for the Electromagnetic Field I: The Glauber—Sudarshan P Representation

  • Howard J. Carmichael
Part of the Texts and Monographs in Physics book series (TMP)


In Chap. 1 we developed a formalism to handle dissipative problems in quantum mechanics. The central result of this formalism was the operator master equation for the reduced density operator ρ of a dissipative system.


Harmonic Oscillator Coherent State Density Operator Reduce Density Operator Ordinary Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    H. Risken: The Fokker Planck Equation ( Springer-Verlag, Berlin, 1984 )MATHCrossRefGoogle Scholar
  2. 3.2
    E. P. Wigner: Phys. Rev. 40, 749 (1932)ADSCrossRefGoogle Scholar
  3. 3.3
    R. J. Glauber: Phys. Rev. 131, 2766 (1963)ADSCrossRefMathSciNetGoogle Scholar
  4. 3.4
    E. C. G. Sudarshan: Phys. Rev. Lett. 10, 277 (1963)ADSMATHCrossRefMathSciNetGoogle Scholar
  5. 3.5
    R. J. Glauber: Phys. Rev. Lett. 10, 84 (1963)ADSCrossRefMathSciNetGoogle Scholar
  6. 3.6
    R. J. Glauber: Phys. Rev. 130, 2529 (1963)ADSCrossRefMathSciNetGoogle Scholar
  7. 3.7
    W. H. Louisell: Quantum Statistical Properties of Radiation ( Wiley, New York, 1973 ) pp. 104–109Google Scholar
  8. 3.8
    M. Sargent III, M. O. Scully, and W. E. Lamb Jr.: Laser Physics (Addison-Wesley, Reading, Massachusetts, 1974 ) Chapter 15Google Scholar
  9. 3.9
    G. Temple: J. London Math. Soc. 28, 134 (1953)MATHCrossRefMathSciNetGoogle Scholar
  10. 3.10
    G. Temple: Proc. Roy. Soc. A 228, 175 (1955)ADSMATHCrossRefMathSciNetGoogle Scholar
  11. 3.11
    M. J. Lighthill: Fourier Analysis and Generalized Functions ( Cambridge University Press, Cambridge, 1960 )Google Scholar
  12. 3.12
    L. Schwartz: Théorie des Distributions, Vol. I/II (Hermann, Paris, 1950/51; 2nd edition 1957/1959)Google Scholar
  13. 3.13
    H. Bremermann: Distributions, Complex Variables, and Fourier Transforms (Addison-Wesley, Reading, Massachusetts, 1965 )Google Scholar
  14. 3.14
    J. R. Klauder and E. C. G. Sudarshan: Fundamentals of Quantum Optics ( Benjamin, New York, 1968 ) pp. 178–201Google Scholar
  15. 3.15
    H. M. Nussenzveig: Introduction to Quantum Optics, ( Gordon and Breach, London, 1973 ) pp. 54–68Google Scholar
  16. 3.16
    D. Zwillinger: Handbook of Differential Equations ( Academic Press, Boston, 1989 ) pp. 325–330MATHGoogle Scholar
  17. 3.17
    W. Feller: An Introduction to Probability Theory and its Applications, Vol. II (Wiley, New York, 1966; 2nd edition 1971) Chapter XVGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Howard J. Carmichael
    • 1
  1. 1.Department of PhysicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations