Skip to main content
Book cover

Chaos pp 45–66Cite as

Billiard Systems

  • Chapter
  • 305 Accesses

Abstract

An extremely simple example for demonstrating chaotic dynamics in conservative systems numerically is that of Birkhoff’s billiard [3.1], i.e. the frictionless motion of a particle on a plane billiard table bounded by a closed curve [3.2]–[3.7]. The limiting cases of strictly regular (integrable) and strictly irregular (ergodic’ or ‘mixed’) systems can be illustrated, as well as the typical case, which shows a complicated mixture of regular and irregular behavior. The onset of chaos follows the so-called Poincaré scenario, i.e. the consecutive destruction of invariant tori for increasing deviation from integrability as described by the KAM-theory and the Poincaré-Birkhoff theorem discussed in Chap. 2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. D. Birkhoff, On the periodic motions of dynamical systems, Acta Math. 50 (1927) 359 (reprinted in R. S. MacKay and J. D. Meiss, Hamiltonian Dynamical Systems, Adam Hilger, Bristol 1987.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Benettin and J.-M. Strelcyn, Numerical experiments on the free motion of a mass point moving in a plane convex region: Stochastic transition and entropy, Phys. Rev. A 17 (1978) 773

    Article  ADS  Google Scholar 

  3. M. V. Berry, Regularity and chaos in classical mechanics, illustrated by three deformations of a circular ‘billiard’, Eur. J. Phys. 2 (1981) 91

    Article  Google Scholar 

  4. N. Saito, H. Hirooka, J. Ford, F. Vivaldi, and G. H. Walker, Numerical study of billiard motion in an annulus bounded by non—concentric circles, Physica D 5 (1982) 273

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. M. Robnik, Classical dynamics of a family of billiards with analytic boundaries, J. Phys. A 16 (1983) 3971

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A. Ramani, A. Kalliterakis, B. Grammaticos, and B. Dorizzi, Integrable curvilinear billiards, Phys. Lett. A 115 (1986) 25

    Article  MathSciNet  ADS  Google Scholar 

  7. H. J. Korsch, B. Mirbach, and H.-J. Jodl, Chaos und Determinismus in der klassischen Dynamik: Billard—Systeme als Modell, Praxis d. Naturwiss. (Phys.) 36(7) (1987) 2

    Google Scholar 

  8. H. Poritsky, The billiard ball problem on a table with a convex boundary — an illustrative dynamical problem, Ann. Math. 51 (1950) 446

    Article  MathSciNet  MATH  Google Scholar 

  9. M. V. Berry, Regular and irregular motion, in: S. Jorna, editor, Topics in Nonlinear Dynamics, page 16. Am. Inst. Phys. Conf. Proc. Vol. 46 (1978) (reprinted in R. S. MacKay and J. D. Meiss, Hamiltonian Dynamical Systems, Adam Hilger, Bristol 1987.

    Google Scholar 

  10. R. S. MacKay and J. D. Meiss, Linear stability of periodic orbits in Lagrangian systems, Phys. Lett. A 98 (1983) 92 (reprinted in: R. S. MacKay and J. D. Meiss, Hamiltonian Dynamical Systems, Adam Hilger, Bristol 1987.

    Article  MathSciNet  ADS  Google Scholar 

  11. R. S. MacKay, J. D. Meiss, and I. C. Percival, Transport in Hamiltonian systems, Physica D13 (1984) 55 (reprinted in: R. S. MacKay and J. D. Meiss, Hamiltonian Dynamical Systems, Adam Hilger, Bristol 1987.

    MathSciNet  ADS  Google Scholar 

  12. J. M. Greene, R. S. MacKay, F. Vivaldi, and M. J. Feigenbaum, Universal behaviour in families of area-preserving maps, Physica D3 (1981) 468 (reprinted in: R. S. MacKay and J. D. Meiss, Hamiltonian Dynamical Systems, Adam Hilger, Bristol 1987.

    Google Scholar 

  13. V. F. Lazutkin, The existence of caustics for a billiard problem in a convex domain, Math. Izv. USSR 7 (1973) 185

    Article  MathSciNet  Google Scholar 

  14. V. F. Lazutkin, Asymptotics of the eigenvalues of the Laplacian and quasimodes. A series of quasimodes corresponding to a system of caustics close to the boundary of the domain, Math. Izv. USSR 7 (1973) 439

    Article  MathSciNet  Google Scholar 

  15. V. F. Lazutkin, The existence of an infinite number of elliptic and hyperbolic periodic trajectories for a convex billiard, Funct. Anal. Appl. 7 (1973) 103

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Robnik and M. V. Berry, Classical billiards in magnetic fields, J. Phys. A 18 (1985) 1361

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. M. Robnik, Regular and chaotic billiard dynamics in magnetic fields, in: S. Sakar, editor, Nonlinear Phenomena and Chaos, page 303, Hilger, Bristol 1986.

    Google Scholar 

  18. H. E. Lehtihet and B. N. Miller, Numerical study of a billiard in a gravitational field, Physica D 21 (1986) 93

    MathSciNet  ADS  Google Scholar 

  19. H. J. Korsch and J. Lang, A new integrable gravitational billiard, J. Phys. A. 24 (1990) 45

    Article  MathSciNet  ADS  Google Scholar 

  20. B. Grammaticos and V. Papageorgiou, Integrable bouncing-ball models, Phys. Rev. A 37 (1988) 5000

    Article  MathSciNet  Google Scholar 

  21. A. Hobson, Ergodic properties of a particle moving inside a polygon, J. Math. Phys. 16 (1975) 2210

    Article  MathSciNet  ADS  Google Scholar 

  22. P. J. Richens and M. V. Berry, Pseudointegrable systems in classical and quantum systems, Physica D 2 (1981) 495

    MathSciNet  ADS  Google Scholar 

  23. P. J. Richens, Unphysical singularities in semiclassical level density expansions for polygon billiards, J. Phys. A 15 (1983) 3961

    Article  MathSciNet  ADS  Google Scholar 

  24. B. Mirbach and H. J. Korsch, Long-lived states and irregular dynamics in inelastic collisions: Analysis of a polygon billiard model, Nonlinearity 2 (1989) 327

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. H.-J. Stöckmann and J. Stein, “Quantum” chaos in billiards studied by microwave absorption, Phys. Rev. Lett. 64 (1990) 2215

    Article  ADS  Google Scholar 

  26. J. Stein and H.-J. Stöckmann, Experimental determination of billiard wave functions, Phys. Rev. Lett. 68 (1992) 2867

    Article  ADS  Google Scholar 

  27. H.-D. Gräf, H. L. Harney, H. Lengeler, C. H. Lewenkopf, C. Rangacharyulu, A. Richter, P. Schardt, and H. A. Weidenmüller, Distribution of eigenmodes in a superconducting billiard with chaotic dynamics, Phys. Rev. Lett. 69 (1992) 1296

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korsch, H.J., Jodl, HJ. (1999). Billiard Systems. In: Chaos. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03866-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03866-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03868-0

  • Online ISBN: 978-3-662-03866-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics