Skip to main content
  • 846 Accesses

Abstract

In Chap. 4 we studied electrons and holes located around defects. Since these electrons and holes are immobile they are known as bound electrons and holes,respectively. In contrast, electrons in the conduction band and holes in the valence band of a semiconductor can carry electrical current. Hence they are referred to as free carriers. In this chapter we will study the effect of an external electric field on free carriers in a semiconductor. The response of these carriers to an electric field depends on the field strength. We will first consider the case of weak electric fields, where the behavior of carriers can be described by Ohm’s law. Under high electric fields, carriers in a semiconductor can acquire so much energy that their average kinetic energy becomes higher than that of the lattice. Such energetic electrons are known as hot electrons. It is very difficult to calculate their properties analytically, therefore our discussions of hot electrons will be qualitative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. J. M. Ziman: Principles of Theory of Solids, 2nd edn. ( Cambridge Univ. Press, Cambridge 1972 ) pp. 129 - 178

    Google Scholar 

  2. B. K. Ridley: Quantum Processes in Semiconductors, 2nd edn. ( Clarendon, Oxford 1988 )

    Google Scholar 

  3. H.S. Robertson: Statistical Thermophysics ( Prentice Hall, Englewood Cliffs, NJ 1993 ) pp. 445 - 449

    Google Scholar 

  4. C. Jacoboni, P. Lugli: The Monte Carlo Method for Semiconductor Device Simulation ( Springer, Wien 1989 ) pp. 104 - 160

    Google Scholar 

  5. D. K. Ferry: Semiconductors ( Macmillan, New York 1991 )

    Google Scholar 

  6. S. S. Devlin: Transport properties, in Physics and Chemistry of II-VI Compounds, ed. by M. Aven, J. S. Prener ( North-Holland, Amsterdam 1967 )

    Google Scholar 

  7. C. Kittel: Introduction to Solid State Physics, 7th edn. ( Wiley, New York 1995 )

    Google Scholar 

  8. E. M. Conwell, M.O. Vassel: High-field distribution function in GaAs. IEEE Trans. ED-13, 22 - 27 (1966)

    Google Scholar 

  9. C. L. Collins, P. Y. Yu: Nonequilibrium phonon spectroscopy: A new technique for studying intervalley scattering in semiconductors. Phys. Rev. B 27, 2602 - 2604 (1983)

    Article  ADS  Google Scholar 

  10. D. L. Rode: Low field electron transport. Semiconductors and Semimetals 10, 1-89 ( Academic, New York 1982 )

    Google Scholar 

  11. D. Long: Scattering of conduction electrons by lattice vibrations in silicon. Phys. Rev. 120, 2024 - 2032 (1960)

    Article  ADS  Google Scholar 

  12. J. L. Birman, M. Lax, R. Loudon: Intervalley-scattering selection rules in III-V semiconductors. Phys. Rev. 145, 620 - 622 (1966)

    Article  ADS  Google Scholar 

  13. D. K. Ferry: First-order optical and intervalley scattering in semiconductors. Phys. Rev. B 14, 1605 - 1609 (1976)

    Article  ADS  Google Scholar 

  14. H. Brooks: Scattering by ionized impurities in semiconductors. Phys. Rev. 83, 879 (1951)

    Google Scholar 

  15. E. M. Conwell, V. Weisskopf: Theory of impurity scattering in semiconductors. Phys. Rev. 77, 388 - 390 (1950)

    Article  ADS  MATH  Google Scholar 

  16. R. L. Liboff: Quantum Mechanics (Addison-Wesley, Reading, MA 1980) p. 625 5.17 S. M. Sze: Semiconductor Devices ( Wiley, New York 1985 ) p. 33

    Google Scholar 

  17. G. E. Stillman, C. M. Wolfe, J. O. Dimmock: Hall coefficient factor for polar mode scattering in n-type GaAs. J. Phys. Chem. Solids 31, 1199 - 1204 (1970)

    Article  ADS  Google Scholar 

  18. K. Fletcher, P.N. Butcher: An exact solution of the linearized Boltzmann equation with applications to the Hall mobility and Hall factor of n-GaAs. J. Phys. C 5, 212 - 224 (1972)

    Article  ADS  Google Scholar 

  19. H. L. Störmer, R. Dingle, A. C. Gossard, W. Wiegmann, R. A. Logan: Electronic properties of modulation-doped GaAs-Al Gal_XAs Superlattices, in Physics of Semiconductors 1978, ed. by B. L. H. Wilson ( Inst. Phys., Bristol 1979 ) pp. 557 - 560

    Google Scholar 

  20. W. Walukiewicz, H. E. Ruda, J. Lagowski, H. C. Gatos: Electron mobility in modulation-doped heterostructures. Phys. Rev. B 30, 4571 - 4582 (1984)

    Article  ADS  Google Scholar 

  21. S. Wang: Fundamentals of Semiconductor Theory and Device Physics ( Prentice Hall, Englewood Cliffs, NJ 1989 )

    Google Scholar 

  22. E. M. Conwell: High Field Transport in Semiconductors. Solid State Physics, Suppl. 9 ( Academic, New York 1967 )

    Google Scholar 

  23. E. J. Yoffa: Dynamics of dense laser-induced plasmas. Phys. Rev. B 21, 2415 - 2425 (1980)

    Article  ADS  Google Scholar 

  24. W. H. Knox, C. Hirlimann, D. A.B. Miller, J. Shah, D. S. Chemla, C. V. Shank: Femtosecond excitation of nonthermal carrier populations in GaAs Quantum Wells. Phys. Rev. Lett. 56, 1191 - 1193 (1986)

    Article  ADS  Google Scholar 

  25. K. Seeger: Semiconductor Physics, 5th edn., Springer Ser. Solid-State Sci., Vol. 40 ( Springer, Berlin, Heidelberg 1991 )

    Google Scholar 

  26. B. Camez, A. Cappy, A. Kaszynski, E. Constant, G. Salmer: Modeling of a submicrometer gate field-effect transistor including effects of nonstationary electron dynamics. J. Appl. Phys. 51, 784 - 790 (1980)

    Article  ADS  Google Scholar 

  27. J. Singh: Physics of Semiconductors and Their Heterostructures ( McGraw-Hill, New York 1993 ) pp. 524 - 531

    Google Scholar 

  28. J. S. Blakemore: Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123 - 181 (1982)

    Article  ADS  Google Scholar 

  29. J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, P. Lugli: Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy. Phys. Rev. Lett. 59, 2222 - 2225 (1987)

    Article  ADS  Google Scholar 

  30. D. S. Kim, P Y. Yu: Hot-electron relaxation and hot phonons in GaAs studied by subpicosecond Raman scattering. Phys. Rev. B 43, 4158 - 4169 (1991)

    Article  ADS  Google Scholar 

  31. E J. Vinson, C. Pickering, A. R. Adams, W. Fawcett, G. D. Pitt: The band structure of GaAs from transferred electron effects at high pressure, in: Physics of Semiconductors 1976, ed. by. F. G. Fumi ( Tipografia Marves, Rome 1976 ) pp. 1243 - 1246

    Google Scholar 

  32. J. B. Gunn: Microwave oscillations of current in III—V semiconductors. Solid State Commun. 1, 88 - 91 (1963)

    Article  ADS  Google Scholar 

  33. J. B. Gunn: Microwave oscillations of current in III—V semiconductors. IBM J. Res. Dev. 8, 141 - 159 (1964)

    Google Scholar 

  34. R. Dalven: Introduction to Applied Solid State Physics, 2nd edn. ( Plenum, New York 1990 ) pp. 158 - 165

    Book  Google Scholar 

  35. K. Seeger: Semiconductor Physics, 5th edn., Springer Ser. Solid-State Sci., Vol.40 (Springer, Berlin, Heidelberg 1991 ) pp. 217 - 272

    Google Scholar 

  36. C. Herring, E. Vogt: Transport and deformation potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944-961 (1956); erratum 105, 1933 (1956)

    ADS  Google Scholar 

  37. E. H. Hall: On a new action of the magnet on electric current. Am. J. Math. 2, 287 - 292 (1879)

    Article  Google Scholar 

  38. L. van der Pauw: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1 - 9 (1958)

    Google Scholar 

General Reading

  • Dalven R.: Introduction to Applied Solid State Physics 2nd edn. ( Plenum, New York 1990 )

    Google Scholar 

  • Ferry D. K.: Semiconductors ( Macmillan, New York 1991 )

    Google Scholar 

  • Rode D. L.: Low field electron transport. Semiconductors and Semimetals 10, 1-89 ( Academic, New York 1982 )

    Google Scholar 

  • Kittel C.: Introduction to Solid State Physics 7th edn. ( Wiley, New York 1995 )

    Google Scholar 

  • Nag B. R.: Electron Transport in Compound Semiconductors, Springer Ser. Solid-State Sci., Vol. 11 ( Springer, Berlin, Heidelberg 1980 )

    Google Scholar 

  • Ridley B. K.: Quantum Processes in Semiconductors, 2nd edn. ( Clarendon, Oxford 1988 )

    Google Scholar 

  • Seeger K.: Semiconductor Physics, 5th edn., Springer Ser. Solid-State Sci., Vol. 40 ( Springer, Berlin, Heidelberg 1991 )

    Google Scholar 

  • Wiley J. D.: Mobility of holes in III—V compounds. Semiconductors and Semimetals 10, 91-174 ( Academic, New York 1982 )

    Google Scholar 

  • Ziman J. M.: Principles of the Theory of Solids, 2nd edn. ( Cambridge Univ. Press, Cambridge 1972 )

    Google Scholar 

  • Conwell E. M.: High Field Transport in Semiconductors, Solid State Physics, Suppl. 9 ( Academic, New York 1967 )

    Google Scholar 

  • Conwell E. M.: In Handbook of Semiconductors (North-Holland, Amsterdam 1982 ) Vol. 1, pp. 513 - 561

    Google Scholar 

  • Jacoboni C., P. Lugli: The Monte Carlo Method for Semiconductor Device Simulation ( Springer, New York 1989 )

    Book  Google Scholar 

  • Singh J.: Physics of Semiconductors and Their Heterostructures ( McGraw-Hill, New York 1993 )

    Google Scholar 

  • Sze S. M.: Semiconductor Devices ( Wiley, New York 1985 )

    Google Scholar 

  • Wang, S.: Fundamentals of Semiconductor Theory and Device Physics ( Prentice Hall Englewood Cliffs, NJ 1989 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, P.Y., Cardona, M. (1999). Electrical Transport. In: Fundamentals of Semiconductors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03848-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03848-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03850-5

  • Online ISBN: 978-3-662-03848-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics