Soliton Models of Hadrons

  • Ulrich Mosel
Part of the Texts and Monographs in Physics book series (TMP)


All the various bag models discussed so far work with a sharp boundary radius R that defines a static cavity. It is therefore impossible to describe surface modes of the bag in a consistent, dynamic formulation. This restriction is remedied by the introduction of models in which the meson fields, through their coupling to the quarks, also provide the binding of the quarks. Since these fields themselves obey equations of motion that are coupled to those of the quarks, the surface modes can be described self-consistently. This is absolutely necessary for the description of time-dependent processes such as, e.g., bag—bag collisions.


Chiral Symmetry Baryon Number Linear Sigma Model Physical Vacuum Chiral Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [LEE81]
    T. D. Lee, Particle Physics and Introduction to Field Theory, Harwood, Chur, 1981, chapter 20Google Scholar
  2. [RIP85]
    G. Ripka, ‘Quark-Loop and Bag Models’, Proc. Int. School of Intermediate Energy Physics, Verona, 1985Google Scholar
  3. [BRO86]
    G. E. Brown and M. Rho, ‘Towards a Basis in QCD for Nuclear Physics’, Comm. Nucl. Part. Phys. 15, 245 (1986)Google Scholar
  4. [HOL86]
    G. Holzwarth and B. Schwesinger, ‘Baryons in the Skyrme Model’, Reports on Progress in Physics 49, 825 (1986)ADSCrossRefGoogle Scholar
  5. [ZAB86]
    I. Zahed and G. E. Brown, ‘The Skyrme Model’, Phys. Rep. 142, 1 (1986)MathSciNetADSCrossRefGoogle Scholar
  6. [BAN87]
    M. K. Banerjee, W. Broniowski, and T. D. Cohen, ‘A Chiral Quark Soliton Model’, in: “Chiral Solitons”, ed. K.-F. Liu, World Scientific, Singapore, 1987Google Scholar
  7. [WIL87]
    L. Wilets, ‘The Non-Topological Soliton Bag’, in: Chiral Solitons, ed. K.F. Liu, World Scientific, Singapore 1987Google Scholar
  8. [BHA88]
    R. K. Bhaduri, ‘Models of the Nucleon: From Quarks to Soliton’, Addison-Wesley, Reading 1988Google Scholar
  9. [WIL89]
    L. Wilets, Nontopological Solitons, World Scientific Lecture Notes in Physics, Vol. 24, World Scientific, Singapore 1989Google Scholar
  10. [BAN93]
    M. K. Banerjee, ‘A Chiral Confining Model of the Nucleon’, Progr. Part. Nucl. Phys. 31 (1993) 77ADSCrossRefGoogle Scholar
  11. [ERV94]
    D. Ebert, H. Reinhardt and M. K. Volkov, ‘Effective Hadron Theory of QCD’, Progr. Part. Nucl. Phys. 33 (1994) 1ADSCrossRefGoogle Scholar
  12. [WMA96]
    Chr. v. Christov, A. Blotz, H.-C. Kim, P. Pobylitsa, T. Watabe, Th. Meissner, E. Ruiz Arriola and K. Goeke, ‘Baryons as Non-topological Chiral Solitons’, Progr. Part. Nucl. Phys. 37 (1996) 91ADSCrossRefGoogle Scholar
  13. [HOT96]
    A. Hosata and H. Toki, ‘Chiral Bag Model for the nucleon’, Phys. Rep. 277 (1996) 65ADSCrossRefGoogle Scholar
  14. [ARW96]
    R. Alkover, H. Reinhardt and H. Weigel, ‘Baryons as Chiral Solitons in the Nambu-Jona-Lasinio Model’, Phys. Rep. 265 (1996) 139MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Ulrich Mosel
    • 1
  1. 1.Institut für Theoretische PhysikJustus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations