Synchrotron Radiation

  • Helmut Wiedemann


Ever since J.C. Maxwell formulated his unifying electro magnetic theory in 1873, the phenomenon of electromagnetic radiation has fascinated the minds of theorists as well as experimentalists. The idea of displacement currents was as radical as it was important to describe electromagnetic waves. It was only fourteen years later when G. Hertz in 1887 succeeded to generate, emit and receive again electromagnetic waves, thus, proving experimentally the existence of electromagnetic waves and the validity of Maxwell’s equations. The sources of electromagnetic radiation are oscillating electric charges and currents in a system of metallic wires.


Synchrotron Radiation Radiation Power Storage Ring Particle Beam Photon Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 9.1
    A. Liénard: L’Eclairage Electrique 16, 5 (1898)Google Scholar
  2. 9.
    E. Wiechert: Archives Neerlandaises 546 (1900)Google Scholar
  3. 9.3
    G.A. Schott: Annalen Physik 24, 635 (1907)ADSMATHCrossRefGoogle Scholar
  4. 9.4
    G.A. Schott: Philosc. Mag. Ser. 6 13, 194 (1907)Google Scholar
  5. 9.5
    G.A. Schott: Electromagnetic Radiation (Cambridge Univ. Press, Cambridge 1912 )Google Scholar
  6. 9.6
    D.W. Kerst, R. Serber: Phys. Rev. 60, 53 (1941)ADSCrossRefGoogle Scholar
  7. 9.7
    D. Ivanenko, I.Ya. Pomeranchouk: Phys. Rev. 65, 343 (1944)ADSCrossRefGoogle Scholar
  8. 9.8
    J.P. Blewett: Phys. Rev. 69, 87 (1946)ADSCrossRefGoogle Scholar
  9. 9.9
    Describing work of C. Sutis: Sci. News Lett. 51, 339 (1947)Google Scholar
  10. 9.10
    Describing work of F. Haber: Electronics 20, 136 (1947)Google Scholar
  11. 9.11
    F. Elder, A. Gurewitsch, R. Langmuir, H. Pollock: Phys. Rev. 71, 829 (1947)ADSCrossRefGoogle Scholar
  12. 9.
    The author would like to thank Prof. M. Eriksson, Lund, Sweden for introducing him to this approach into the theory of synchrotron radiationGoogle Scholar
  13. 9.13
    M. Sands: Physics with Intersecting Storage Rings, ed. by B. Touschek ( Academic, New York 1971 )Google Scholar
  14. 9.14
    R. Coisson: Opt. Commun. 22, 135 (1977)ADSCrossRefGoogle Scholar
  15. 9.15
    R. Bossart, J. Bosser, L. Burnod, R. Coisson, E. D’Amico, A. Hofmann, J. Mann: Nucl. Instrum. Meth. 164, 275 (1979)CrossRefGoogle Scholar
  16. 9.16
    R. Bossart, J. Boser, L. Burnod, E. D’Amico, G. Ferioli, J. Mann, F. Meot: Nucl. Instrum. Meth. 184, 349 (1981)ADSCrossRefGoogle Scholar
  17. 9.17
    J.M Peterson: In Physics of Particle Accelerators. ed. by M. Month, M. Dienes. AIP Proc. 184, 2240 (Am. Inst. Phys., New York 1989 )Google Scholar
  18. 9.18
    J.D. Jackson: Classical Electrodynamics(Wiley, New York 1975 )Google Scholar
  19. 9.19
    D. Ivanenko, A.A. Sokolov: DAN (USSR) 59, 1551 (1972)Google Scholar
  20. 9.20
    J. Schwinger: Phys. Rev. 75, 1912 (1949)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 9.21
    D.H. Tomboulian, P. L. Hartman: Phys. Rev. 102, 102 (1956)Google Scholar
  22. 9.22
    G. Bathow, E. Freytag, R. Haensel. J. Appl. Phys. 37, 3449 (1966)ADSCrossRefGoogle Scholar
  23. 9.23
    M. Abramowitz, I. Stegun: Handbook of Mathematical Functions ( Dover, New York 1972 )MATHGoogle Scholar
  24. 9.24
    L.I. Schiff: Rev. Sci. Instrum. 17, 6 (1946)Google Scholar
  25. 9.25
    H. Wiedemann, P. Kung, H.0 Lihn: Nucl. Instrum. Meth. A 319, 1 (1992)Google Scholar
  26. 9.26
    F.C. Michel: Phys. Rev. Lett. 48, 580 (1982)ADSCrossRefGoogle Scholar
  27. 9.27
    T. Nakazato, M. Oyamada, N. Niimura, S. Urasawa, O. Konno, A. Kagaya, R. Kato, T. Kamiyama, Y. Torizuka, T. Nanba, Y. Kondo, Y. Shibata, K. Ishi, T. Oshaka, M. Ikezawa: Phys. Rev. Lett. 63. 1245 (1989)ADSCrossRefGoogle Scholar
  28. 9.28
    E.B.Blum, U.Happek, A.J. Sievers: Nucl. Instrum. Meth. A 307, 568 (1992)ADSGoogle Scholar
  29. 9.
    I am thankful to Mrs. P. Kung and Mr. H.C. Lihn, who provided the data for this graphGoogle Scholar
  30. 9.30
    M. Born, E. Wolf: Principles of Optics ( Pergamon, Oxford 1975 )Google Scholar
  31. 9.31
    G.B. Airy: Trans. Cambr. Phil. Soc. 5, 283 (1835)ADSGoogle Scholar
  32. 9.32
    M. Berndt, W. Brunk, R. Cronin, D. Jensen, R. Johnson, A. King, J. Spencer, T. Taylor, H. Winick, IEEE Trans. NS-26, 3812 (1979)Google Scholar
  33. 9.33
    E. Hoyer, T. Chan, J.W.G. Chin, K. Halbach, K.J. Kim, H. Winick, J. Yang: IEEE Trans. NS-30, 3118 (1983)Google Scholar
  34. 9.34
    K. Halbach: J. Physique, Cl, Suppl. 2, 44 (February 1983)Google Scholar
  35. 9.35
    W. Heitler: The Quantum Theory of Radiation ( Clarendon, Oxford 1954 )MATHGoogle Scholar
  36. 9.36
    W.M. Lavender: Observation and analysis of X-ray undulator radiation from PEP. Ph.D Thesis, Stanford University (1988)Google Scholar
  37. 9.37
    R.H. Milburn: Phys. Rev. Lett. 4, 75 (1963)ADSCrossRefGoogle Scholar
  38. 9.38
    F.A. Arutyunian, V.A. Tumanian: Phys. Rev. Lett. 4, 176 (1963)Google Scholar
  39. 9.39
    F.A. Arutyunian, I.I. Goldman, V.A Tumanian: ZHETF (USSR)45, 312 (1963)Google Scholar
  40. 9.40
    I.F. Ginzburg, G.L. Kotin, V.G. Serbo, V.I. Telnov: Colliding y e and y y beams based on the single pass accelerators of VLEPP type. Preprint 81–102 ( Inst. Nucl. Phys., Novosibirsk, USSR 1981 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Helmut Wiedemann
    • 1
  1. 1.Applied Physics Department and Synchrotron Radiation LaboratoryStanford UniversityStanfordUSA

Personalised recommendations