Advertisement

Adaptronic Systems in Engineering

  • Ben. K. Wada
  • Christian Boller
  • Hartmut Janocha
  • Gerhard Hirsch
  • Hiroshi Matsuhisa

Abstract

Often the primary objective of space exploration and utilization includes in-situ measurements and observations, and then the transmission of signals back to Earth. Precision mechanical systems are necessary to help meet this objective. In the 1980s, one of the technical challenges was the control of large (up to 100 m in dimensions) and precise (sub-micron level) space structures. These challenges motivated the initiation of research in adaptronics to provide alternatives to the approach of adding hundreds, if not thousands, of sensors/actuators and their controllers in order to control the vibrations of ‘linear’ structures. Among the difficulties with the proposed Multiple Input Multiple Output (MIMO) approach were reliability of the control system, processing demands, and the necessary accuracy of knowledge of the structural system characteristics in an operating environment in space.

Keywords

Acoustic Emission Multiple Input Multiple Output Piezoelectric Actuator Smart Structure Tune Mass Damper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Forward, R.L.: Electronic Damping of Orthogonal Bending Modes in a Cylindrical Mast -Experimental. Journal of Spacecraft and Rockets, 18, Jan. 1981.Google Scholar
  2. 2.
    Wada, B.K.: Adaptive Structures: An Overview. Journal of Spacecraft and Rockets, 27 3, May-June, 1990.Google Scholar
  3. 3.
    Wada, B.K., Editor: Adaptive Structures. AD-Vol. 15, ASME Winter Annual Meeting, San Francisco, CA, Nov. 1989.Google Scholar
  4. 4.
    Wada, B.K.; Fanson, J.L. and Miura, K, Editors: First Joint US/Japan Conference on Adaptive Structure. Technomics Publishing Company, Lancaster, PA, 1990.Google Scholar
  5. 5.
    Wada, B.K.: Robust Structures Through the Incorporation of Adaptive Structures. IAF-94-I.4.199, 45th Congress of the International Astronautical Federation, Jerusalem, Israel, Oct. 1994.Google Scholar
  6. 6.
    Wada, B.K.; Fanson, J. and Chen, G-S: Adaptive Structure to Enable Missions by Relaxing Ground Test Requirements. Journal of Spacecraft and Rockets, 28 6, Nov. -Dec. 1991.Google Scholar
  7. 7.
    Wada, B.K.: Adaptive Structures for Deployment/Construction of Precision Space Structures. Proceedings of the 18th International Space And Astronautical Science Meeting, Kagoshima, Japan, March 1992.Google Scholar
  8. 8.
    Das, S.K.; Utku, S.; Chen, G-S and Wada, B.K.: Optimal Actuator Placement in Adaptive Precision Trusses. Intelligent Structural Systems, Editors Tzou and Anderson, Kluwer Academic Publishers, 1992.Google Scholar
  9. 9.
    Chen, J.C. and Fanson, J.L.: System Identification Tset Using Active Members. AIAA 89–1290, Proceedings of the 30th AIAA Structures, Structural Dynamics and Materials Conference, Mobile, AL, 1989.Google Scholar
  10. 10.
    Kuo, C.P.; Chen, G-S; Pham, P. and Wada, B.K.: On-Orbit System Identification Using Active Members. AIAA 90–1129, Proceedings of the 31st AIAA Structures, Structural and Materials Conference, Long Beach, CA, 1990.Google Scholar
  11. 11.
    Wada, B.K.: Structural Design for Control. Flight-Vehicle Materials, Structures, and Dynamics-Assessment and Future Direction, 5 Chapter 10, Editors Noor and Venneri, ASME, New York, NY, 1993.Google Scholar
  12. 12.
    Bruno, R.; Salama, M.A. and Garba, J.: Actuator Placement for Static Shape Control of Nonlinear Truss Structures. Proceedings of the Third International Conference on Adaptive Structures, Technomics Publishing, Lancaster, PA, San Diego, CA 1992.Google Scholar
  13. 13.
    Chen, G-S. and Lurie, B.J.: Active Member Bridge Feedback Control for Damping Augmentation. Journal of Guidance, Control and Dynamics, 15 5, Sept.-Oct. 1992.Google Scholar
  14. 14.
    Neat, G.W.; O’Brien, J.F.; Lurie, B.J.; Garnica, A.; Belvin, W.K.; Sula, J. and Won, J.: Joint Langley Research Center/Jet Propulsion Laboratory CSI Experiment. 15th Annual AAS Guidance and Control Conference, Keystone, CO, Feb. 8–12, 1992.Google Scholar
  15. 15.
    Rahman, Z.; Spanos, J.; O’Brien, J. and Chu, C.: Optical Pathlength Control Experiment on JPL Phase B Testbed. AIAA 93–1695, Proceedings of the 34th Structures, Structural Dynamics and Materials Conference, La Jolla, CA, April 1993.Google Scholar
  16. 16.
    Lawrence, C.; Lurie, B.; Chen, G-S and Swanson, A.: Active Member Vibration Control Experiment in a KC-135 Reduced Gravity Environment. Proceedings of First US/Japan Conference on Adaptive Structures, Technomics Publishing Co., Lancaster, PA, May 1991.Google Scholar
  17. 17.
    Bousquet, P.W.; Guay, P. and Mercier, F.: Evaluation of Active Damping Performances in Orbit. Proceedings of the Seventh International Conference on Adaptive Structures Technology, Technomics Publishing Co., Lancaster, PA, Rome, Italy, Oct. 1996.Google Scholar
  18. 18.
    Manning, R.A.; Wyse, R.E. and Schubert, S.R.: Development of an Active Structure Flight Experiment. AIAA 93–1114, AIAA Aerospace Design Conference, Irvine, CA, Feb. 16–19, 1993.Google Scholar
  19. 19.
    Geng, Z.J.; Pan, G.G.; Haynes, L.S.; Wada, B.K. and Garba, J.A.: An Intelligent Control System for Multiple Degree-of-Freedom Vibration Isolation. Journal of Intelligent Material Systems and Structure, 6 6, 1995.Google Scholar
  20. 20.
    Glaser, R.; Garba, J.A. and Obal, M.: STRV-lb Cryo-cooler Vibration Suppression. AIAA 95–1122, Proceedings of the 36th AIAA Structures, Structural Dynamics and Materials Conference, New Orleans, LA, 1995.Google Scholar
  21. 21.
    Wada, B.K. and Rahman, Z.: Vibration Isolation, Suppression, Steering and Pointing (VISSP). ESA Conference on Spacecraft Structures, Materials, and Mechanical Testing, Noordwijk, the Netherlands, March 27–29, 1996.Google Scholar
  22. 22.
    Agnes, G.S. and K. Silva: Aircraft Smart Structures Research in the USAF Wright Laboratory. AGARD-CP-531, Paper 27, 1992Google Scholar
  23. 23.
    Schmidt, W. and Chr. Boller: Smart Structures - A Technology for Next Generation Aircraft. AGARD-CP-531, Paper 1, 1992Google Scholar
  24. 24.
    Kudva, J.N. et al.: Overview of the ARPA/WL, Smart Structures and Material Development - Smart Wing, Contract. Paper No. 2721–02, SPIE North American Conference on Smart Structures and Materials, San Diego CA, 1996Google Scholar
  25. 25.
    Rogers, C.A. (Ed.): Smart Materials, Structures, and Mathematical Issues. Technomic Publ. Co., 1988Google Scholar
  26. 26.
    AGARD: Smart Structures for Aircraft and Spacecraft. AGARD-CP-531, 1992Google Scholar
  27. 27.
    AIAA/ASME: Adaptive Structures Forum. AIAA Proceedings, 1994Google Scholar
  28. 28.
    ICAST,1991–1995: Proc. Internat. Conf. on Adaptive Struct.; Technomic Publ. Co.Google Scholar
  29. 29.
    SPIE: Proc. of: Fiber Optic Smart Structures and Skins II. The Internat. Soc. for Optical Engineering (SPIE), 1988 ff.Google Scholar
  30. 30.
    Crawley, E.F. and E.H. Anderson: Detailed Models of Piezoceramic Actuation of Beams. AIAA 89–1388-CP, pp. 2000–2010, 1989Google Scholar
  31. 31.
    Wada, B.K. and J.A. Garba: Advances in Adaptive Structures at Jet Propulsion Laboratory. AGARD-CP-531, Paper 28, 1992Google Scholar
  32. 32.
    Fanson, J.: Articulating Fold Mirror for the Wide Field and Planetary Camera. Proc. of the 4th Internat. Conf. on Adaptive Structures, Technomic, pp. 278302, 1993Google Scholar
  33. 33.
    Varadan, V.K. and V.V. Varadan: Smart Materials, Smart Skins, and Composites for Aerospace Applications. Proc.: ECCM Smart Composites Workshop, pp. 17–22, 1993Google Scholar
  34. 34.
    Obal, M., et al.: The Satellite Attack Warning and Assessment Flight Experiment (SAWAFE). AGARD CP-531, Paper 7, 1992Google Scholar
  35. 35.
    Varadan, V.K. and V.V. Varadan: Smart Materials, MEMS and Electronics Integration for Aerospace Applications. Proc.: Internat. Aerospace Symp. (IAS), Nagoya/Japan, pp. 115–123, 1994Google Scholar
  36. 36.
    Boller, Chr.: Fundamentals on Damage Monitoring. AGARD LS-205, Paper 4, 1996Google Scholar
  37. 37.
    Measures, R.: Fibre Optic Sensing for Composite Smart Structures. AGARD CP-531, Paper 11, 1992Google Scholar
  38. 38.
    Tutton, P.A. and F.M. Underwood: Structural Health Monitoring Using Embedded Fibre Optic Sensors; AGARD CP-531, Paper 18, 1992Google Scholar
  39. 39.
    Hickman, G.A.; J.J. Gerardi and Y. Feng: Application of Smart Structures to Aircraft Health Monitoring. J. of Intell. Mat. Syst. and Struct., 2, pp. 411–430, 1991CrossRefGoogle Scholar
  40. 40.
    Tracy, J.J. and G.C. Pardoen: Effect of Delamination on the natural Frequencies of Composite Laminates. J. of Composite Material, 23, pp. 1200–1215, 1989CrossRefGoogle Scholar
  41. 41.
    Carlyle, J.M.: Acoustic Emission Testing the F-111. NDT-Internat., 22 (2), pp. 67–73, 1989Google Scholar
  42. 42.
    McBride, S.; M. Viner and M. Pollard: Acoustic Emission Monitoring of a Ground Durability and Damage Tolerance Test. in: D.O. Thompson zhaohuan D.E. Chimenti: Review of Progress in Quantitative NDE; 10B, Plenum Press, pp. 1913–1919, 1991Google Scholar
  43. 43.
    Vary, A. and R.F. Lark: Correlations of Fiber Composite Tensile Strength with the Ultrasonic Stress Wave Factor. J. of Testing and Evaluation; pp. 185–191, 1979Google Scholar
  44. 44.
    Keilers, C.H. and F.-K. Chang: Identifying Delamination in Composite Beams Using Built-In Piezoelectrics. J. of. Int. Mat. Syst. zhaohuan Struct., 6, pp. 649–672, 1995CrossRefGoogle Scholar
  45. 45.
    Victorov, I.A.: Rayleigh and Lamb Wave; Plenium, New York, 1967Google Scholar
  46. 46.
    Kaczmarek, H.; C. Simon and C. Delebarre: Evaluation of Lamb Wave Performances for the Health Monitoring of Composites Using Bonded Piezoelectric Transducers. Proc. of ICIM’96 and ECSSM 96, SPIE 2779, pp. 130–135, 1996CrossRefGoogle Scholar
  47. 47.
    Blaha, F.A. and S.L. McBride: Fiber-Optic Sensor Systems for Measuring Strain and the Detection of Acoustic Emissions in Smart Struct. AGARD CP531, Paper 21, 1992Google Scholar
  48. 48.
    Fiirstenau, N.; D.D. Jantzen and W. Schmidt: Fiber-Optic Interferometric Strain Gauge for Smart Structures Applications: First Flight Tests. AGARD CP-531, Paper 24, 1992Google Scholar
  49. 49.
    Tomlinson, G.R.: Use of Neural Networks/Genetic Algorithms for Fault Detection and Sensor Location. AGARD LS-205, 1996Google Scholar
  50. 50.
    Varadan, V.K. and V.V. Varadan: Smart Structures, MEMS and Smart Electronics for Aircraft. Paper 8; AGARD LS-205, 1996Google Scholar
  51. 51.
    Varadan, V.V., et al.: Image Reconstruction of Flaws using Ramp Response Signature. J. Of Wave-Mat. Interact., 10 (1), pp. 67–78, 1995Google Scholar
  52. 52.
    MIL-STD-1530A: Military Standard, Aircraft Structural Integrity Program, Airplane Requirements, 1975Google Scholar
  53. 53.
    Kudva, J.N.; A.J. Lockyer and C.B. Van Way: Structural Health Monitoring of Aircraft Components. Paper 9; AGARD LS-205, 1996Google Scholar
  54. 54.
    DeCamp, R.W.; R. Hardy and D.K. Gould: SAE Internat Pacific Air and Space Technology Conf., Melbourne /Australia, Nov. 13–17, 1987Google Scholar
  55. 55.
    Wadley, H.N.G.: Characteristics and Processing of Smart Materials. Paper 1, AGARD LS-205, 1996Google Scholar
  56. 56.
    Breitbach, E.J.: Research Status on Adaptive Structures in Europe. Proc. of 2nd Joint Japan/U.S. Conf. on Adaptive Structures; Technomic Sc. Publ., 1991Google Scholar
  57. 57.
    Charon, W. and H. Baier: Active Mechanical Components as a Step Towards Adaptive Structures in Space. Proc.: 4th Int. Conf. on Adaptive Structures; Technomic, 1993Google Scholar
  58. 58.
    Herold-Schmidt, U.; W. Schäfer and H.W. Zaglauer: Piezoceramics/CFRP composites for active vibration control and shape control of aerospace structures; SPIE 2779, pp. 718–723, 1996Google Scholar
  59. 59.
    Misra, M.S.; B. Carpenter and B. Maclean: Adaptive Structure Design Employing Shape Memory Actuators. AGARD-CP 531, paper 15, 1992Google Scholar
  60. 60.
    Barrett, R.; R.S. Gross and F. Borozoski: Missile Flight Control Using Active Felxspar Actuators. Smart Mater. zhaohuan Struct., 5, pp. 121–128, 1996Google Scholar
  61. 61.
    Barrett, R.: Active Aeroelastic Tailoring of an Adaptive Flexspar Stabilator. Smart Mater. zhaohuan Struct., vol. 5, pp. 723–730, 1996CrossRefGoogle Scholar
  62. 62.
    Lazarus, K.B. and E.F. Crawley: Multivariable High-Authority Control of Plate-like Active Structures; AIAA Paper No. 92–2529; 33rd AIAA Conf. on Structures, Structural Dynamics, and Materials, Dallas/TX, 1992Google Scholar
  63. 63.
    Borchers, I.U., et al.: Selected Flight Test Data and Control System Results of the CEC BRITE/EURAM ASANCA Study. in: Proc. of Internoise 93, pp. 59–64, 1993Google Scholar
  64. 64.
    Fuller, C.R., et al.: Active Control of Interior Noise in Model Aircraft Fuselages Using Piezoceramic Actuators. AIAA Journal, 30 (11), pp. 2613–2617, 1992CrossRefGoogle Scholar
  65. 65.
    Strehlow, H. and H. Rapp: Smart Materials for Helicopter Rotor Active Control; AGARD CP-531, Paper 5, 1992Google Scholar
  66. 66.
    Spangler, R.L. Jr. and S.R. Hall: Piezoelectric Actuators for Helicopter Rotor Control; Report #SSL 1–89, SERC 14–90, MIT Cambridge/USA, 1989Google Scholar
  67. 67.
    Hall, S.R. and E.F. Prechtl: Development of a Piezoelectric Servoflap for Helicopter Rotor Control. Smart Mater. zhaohuan Struct., 5, pp. 26–34, 1996CrossRefGoogle Scholar
  68. 68.
    Straub, F.K.: A Feasibility Study of Using Smart Materials for Rotor Control; Smart Mater. zhaohuan Struct, 5, pp. 1–10, 1996CrossRefGoogle Scholar
  69. 69.
    Straub, F.K. and D.J. Merkley: Design of a Servo-Flap Rotor for Reduced Control Loads; ibid, pp. 68–75, 1996Google Scholar
  70. 70.
    Ben-Zeev, O. and I. Chopra: Advances in the Development of an Intelligent Heli-copter Rotor Employing Smart Trailing-Edge Flaps. ibid, pp. 11–25, 1996Google Scholar
  71. 71.
    Fenn, R.C., et al.: Terfenol-D Driven Flaps for Helicopter Vibration Reduction. ibid, pp. 49–57, 1996Google Scholar
  72. 72.
    Samak, D.K. and I. Chopra: Design of High Force, High Displacement Actuators for Helicopter Rotors. ibid, pp. 58–67, 1996Google Scholar
  73. 73.
    Roglin, R.L. and S.V. Hanagud: A Helicopter with Adaptive Rotor Blades for Collective Control; ibid, pp. 76–88, 1996Google Scholar
  74. 74.
    Das, A.; G. Ombrek and M. Obal: Adaptive Structures for Spacecraft - A USAF Perspective; AGARD CP-531, Paper 3, 1992Google Scholar
  75. 75.
    Obal, M. and J.M. Sater: Adaptive Structures Programs for the Strategic Defense Initiative Organization. Proc.: 33rd Struct., Struct. Dynam., zhaohuan Mat.ls Conf., Dallas/TX, 1992Google Scholar
  76. 76.
    Clark, R.L. and C.R. Fuller: Control of Sound Radiation with Adaptive Structures. J. of Intell. Mater. Syst. and Struct., 2, pp. 431–452, 1991CrossRefGoogle Scholar
  77. 77.
    Priou, A.: Electromagnetic Antenna and Smart Structures. AGARD LS-205, Paper 11, 1996Google Scholar
  78. 78.
    Lockyer, A.J. et al.: Development of a Conformal Load Carrying Smart Skin Antenna for Military Aircraft. SPIE 2448 /53, 1995Google Scholar
  79. 79.
    Altandal, K.H.: Smart Skin Structure Technology Demonstration. SPIE Meeting on Smart Structures and Materials; San Diego/CA, 1996Google Scholar
  80. 80.
    Howard, B.M. et al.. Thermoadaptive Antennas; SPIE North American Conference on Smart Structures and Materials, San Diego/CA, 1996Google Scholar
  81. 81.
    Howard, B.M. et al.: Electrochromic Adaptive Antennas. ibid, 1996Google Scholar
  82. 82.
    Varadan, V.K.. Design and Development of a Conformal Spiral Antenna. ibid, 1996Google Scholar
  83. 83.
    Huang, J-B. and C-M. Ho: Micro Riblets for Drag Reduction. SPIE Proceedings, edited by V.K. Varadan, 2448, pp. 245–250, 1995Google Scholar
  84. 84.
    Varadan, V.K. and V.V. Varadan: Drag Reduction in Aircraft Structures. SPIE Conference, San Diego/CA, 1995Google Scholar
  85. 85.
    Varadan, V.V. and V.K. Varadan: Microriblets for Drag Reduction using MEMS Technology. SPIE Conf. San Diego, 1995Google Scholar
  86. 86.
    Varadan, V.K. and V.V. Varadan: 3D MEMS Structures and their Applications. Proc. of the Internat. Symposium on Microsystems, Intelligent Materials and Robots; Tohoku Univ., Sendai/Japan, 1995Google Scholar
  87. 87.
    N.N.: Advanced Materials and Processes. 9, p. 9, 1995Google Scholar
  88. 88.
    Schrey, U.; Ulm, M.: Verteilte Aktorsysteme im Kraftfahrzeug. Mikroelektronik 7 4, pp. 214–217 (1993).Google Scholar
  89. 89.
    Menge, W.; Hobein, D.: Integration eines E-Gas Systems in eine modulare Antriebsstrang Management Architektur. VDI-Berichte Nr. 1170, pp. 253–278 (1994).Google Scholar
  90. 90.
    van Zanten, A.; Erhard, R.; Pfaff, G.: FDR — Die Fahrdynamikregelung von Bosch. ATZ Automobiltechnische Zeitschrift 96 11, pp. 674–689 (1994).Google Scholar
  91. 91.
    Kücükay, F.; Renoth, F.: Intelligente Steuerung von Automatikgetrieben durch den Einsatz der Elektronik. ATZ Automobiltechnische Zeitschrift 96 4, pp. 228235 (1994).Google Scholar
  92. 92.
    Graf, F.; Rauner, H.: Integration der Steuerung ins Getriebe–Getriebelektronik als Produktionsmodul: Chancen und Risiken. VDI Report No. 1175, pp. 339–349 (1995).Google Scholar
  93. 93.
    Ulm, M.; Lacher, F.; Graf, F.: Die elektronische Getriebesteuerung 2000–Markt und technische Trends -. VDI Report No. 1170, pp. 201–218 (1994).Google Scholar
  94. 94.
    Bergholz, R.; Rech, B.: Anforderungen und Chancen der Adaptronik im Kraftfahrzeug. Adaptronic Congress Berlin 96, 20–21 November 1996 (Sauer Marketing-Service, Göttingen), pp. 1–21.Google Scholar
  95. 95.
    Spanner, K.; Wolny, W.W.: Trends and Challenges in New Piezoelectric Actuator Applications (Review). Proc. Actuator 96, 5th Int. Conf. New Actuators, 26–28 June 1996, Bremen, GermanyGoogle Scholar
  96. 96.
    Kulmen, K.; Janocha, H.: Compensation of the Creep and Hysteresis Effects on Piezoelectric Transducers with Inverse Systems. Proc. Actuator 98, 6th Int. Conf. New Actuators, 17–19 June 1998, Bremen, GermanyGoogle Scholar
  97. 97.
    Jungnickel, G.; Wunderlich, B.: Korrektursystem für thermisch bedingte Neigungen an Werkzeugmaschinen. In: wt Werkstattstechnik, 88 3, p. 92 (1998)Google Scholar
  98. 98.
    Rech, B.: Aktoren mit elektrorheologischen Flüssigkeiten. PhD thesis, Universität des Saarlandes 1996. Verlag Mainz, Wissenschaftsverlag, AachenGoogle Scholar
  99. 99.
    Janocha, H.; Rech, B.; Bölter, R.: Practice-Relevant Aspects of Constructing ER Fluid Actuators; Proc. 5th Int. Conf. Electro-Rheological Fluids, MagnetoRheological Suspensions and Associated Technology. W.A. Bullough (ed.), 1014 July 1995, Sheffield, UK, pp. 435–447Google Scholar
  100. 100.
    Morishita, Sh.; Ura T.: ER Fluid Applications to Vibration Control Devices and an Adaptive Neural-Net Controller. J. of Intelligent Material Systems and Structures 4, pp. 366–372 (1993)CrossRefGoogle Scholar
  101. 101.
    Gosebruch, H.: Rundschleifen im geschlossenen Regelkreis. VDI-Verlag, Düsseldorf 1990Google Scholar
  102. 102.
    Gaul, L.; Nitsche, R.; Sachau, D.: Semi-Active Vibration Control of Flexible Structures. Proc. Euromec 373 Colloquium, Modelling and Control of Adaptive Mech. Structures, 11–13 March 1998, Magdeburg, GermanyGoogle Scholar
  103. 103.
    Köhler, E.; Kunzmann, J.: Schnelle Pneumatikventile mit piezoelektrischen Aktoren. In: 0-FP Olhydraulik und Pneumatik 42 1, pp. 43–46 (1998)Google Scholar
  104. 104.
    Bölter, R.; Janocha, H.: Aktoren mit elektrorheologischen und magnetorheologischen Flüssigkeiten. In: atp-Automatisierungstechnische Praxis 39 5, pp. 1826 (1997)Google Scholar
  105. 105.
    Lord Corp, Cary, North Carolina: Product information, 1996Google Scholar
  106. 106.
    Kobori, T.; Minai, R.: Analytical Study on Active Seismic Response Control. Trans. Arch. Inst. Japan. 66, 257–260 (1960)Google Scholar
  107. 107.
    Yao, J.T.B.: Concept of Structural Control. ASCE. J. Structural Div. 98 (7), 1567–1574 (1972)Google Scholar
  108. 108.
    Leipholz, H.H.E.: Structural Control. North-Holland Publ. Comp., Amsterdam, New York, Oxford (1980)Google Scholar
  109. 109.
    Leipholz, H.H.E.: Structural Control. Martinus Nijhoff Publ., Amsterdam (1985)Google Scholar
  110. 110.
    Soong, T.T.: Active Structural Control. Longman Scientific zhaohuan Technical, Essex (1990)Google Scholar
  111. 111.
    Housner, G.W.; Masri, S.F.: International Workshop on Structural Control, Hawaii USC Publ. Number CE-9311, Los Angeles (1993)Google Scholar
  112. 112.
    Housner, G.W.; Masri, S.F. and Chassiakos, A.G.: First World Conference on Structural Control. Proc. International Association for Structural Control, USC, Los Angeles (1994)Google Scholar
  113. 113.
    Wada, B.K.; Fanson, J.; Crawley, E.: Adaptive structures. Journ. of Spacecraft and Rockets 27 (3). pp. 157–174 (1990)Google Scholar
  114. 114.
    Bachmann, H. et al.: Vibration Problems in Structures. Birkhäuser, Basel, Boston, Berlin (1995)Google Scholar
  115. 115.
    Sockel, H. et al.: Wind-excited Vibrations of Structures. CISM Courses and Lectures No. 335, Springer, Wien, New York (1994)Google Scholar
  116. 116.
    Koshika, N. et al.: Research, development and application of active-passive composite tuned mass dampers. Proc. 4th Int. Conf. on Adaptive Structures, Technomic Publ. Co.Inc. (1993)Google Scholar
  117. 117.
    Tamura, K.: Technology of active control systems for structural vibration. Int. Post-SMiRT Conference Seminar, Capri (1993)Google Scholar
  118. 118.
    Reinhorn, A.M. et al.: Active bracing system A full scale implementation of active control. Technical Report NCEER-92–0020 (1992)Google Scholar
  119. 119.
    Traîna, M.I. et al.: An experimental study of the earthquake response of building models provided with active damping devices. Proc. Ninth World Conf. on Earthquake Eng., VIII 447–4522 (1988)Google Scholar
  120. 120.
    Wada, B.K. and Das, S.: Application of adaptive structures concepts to civil structures. Intelligent Structures-2, Ed. Wen, Y.K., Elsvier Publishing (1992)Google Scholar
  121. 121.
    Matsuhisa, H.; Gu, R.; Wang, Y.; Nishihara, O. and Sato, S.: Vibration Control of a Ropeway Carrier by Passive Dynamic Vibration Absorbers. Jpn. Soc. Mech. Eng. International Journal (C), 38 (4), pp. 657–662 (1995). [Japanese original: Trans Jpn, Soc. Mech. Eng, 59 (56), C, pp. 1717–1722 (1993)]Google Scholar
  122. 122.
    Matsuhisa, H.; Nishihara, O.; Sato, K.; Otake, Y. and Yasuda, M.: Design of Dynamic Absorber for a Gondola Lift. Proc. of Asia-Pacific Vibration Conference, pp. 215–220 (1995)Google Scholar
  123. 123.
    Nishihara, O.; Matsuhisa, H. and Sato, S.: Methods for Designing Vibration Control Mechanisms with Gyroscopic Moment. Proc. of Asia-Pacific Vibration Conference 1, pp. 3. 56–3. 61 (1991)Google Scholar
  124. 124.
    Nishihara, O.; Matsuhisa, H. and Sato, S.: Optimum Design of Vibration Control Mechanisms with Gyroscopic Moment for Harmonic and Stationary Random Excitations. Proc. of the 1st International Conf. on Motion and Vibration Control 1, pp. 321–326 (1992)Google Scholar
  125. 125.
    Nishihara, O.; Matsuhisa, H. and Sato, S.: Passive Gyroscopic Damper for Stabilization of rigid Body Pendulum. Proc. of Asia—Pacific Vibration Conference 3, pp. 889–894 (1993)Google Scholar
  126. 126.
    Nishihara, O.; Ishihara, H.; Matsuhisa, H. and Sato, S.: Design Optimization of Passive Gyroscopic Damper by Genetic Algorithms — Monte Carlo Optimization under Random Excitations. (in Japanese), Trans. Jpn Soc Mech Eng, No. 64026 (I), pp. 31–34 (1994)Google Scholar
  127. 127.
    Nishihara, O.; Yasuda, M.; Kanki, H; Nekomoto, Y.; Sato, K.; Otake, Y. and Matsuhisa, H.: Stability Maximization of Passive Gyroscopic Damper for Rope-way Gondola. Proc. of Asia—Pacific Vibration Conference, pp. 864–869 (1995)Google Scholar
  128. 128.
    Den Hartog, J.P.: Mechanical Vibration. 4th ed., McGraw—Hill, pp. 87–106 (1956)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Ben. K. Wada
    • 1
  • Christian Boller
    • 2
  • Hartmut Janocha
    • 3
  • Gerhard Hirsch
    • 4
  • Hiroshi Matsuhisa
    • 5
  1. 1.Jet Propulsion LaboratoryPasadenaUSA
  2. 2.DaimlerChrysler Aerospace MT2MünchenGermany
  3. 3.Lehrstuhl für ProzeßautomatisierungUniversität des SaarlandesSaarbrückenGermany
  4. 4.TMM GmbHEschweilerGermany
  5. 5.Dept. of Precision EngineeringKyoto UniversityKyotoJapan

Personalised recommendations