Skip to main content

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 12))

Abstract

In this paper, we summarize some of the recent results obtained by the soliton group at Osaka University. The main objective is to study nonlinear pulse propagation in ultra-fast optical communication lines having dispersion management. For the case of soliton system, the main purpose of the dispersion management is to reduce several effects such as radiations from the pulse due to lumped amplifiers compensating the fiber loss [1, 2], modulational instability [4], jitters caused by the collisions between signals in different channels of the wavelength-division-multiplexing (WDM) [5, 6, 7], the Gordon-Hans effect resulting from the interaction with noise [8, 9], and to set a desired average value of the dispersion [10, 4] (see also a review paper [11]). It was pointed out in numerical studies [12, 13] that in such a line the pulse is deformed from the ideal soliton, i.e., it has a chirp and requires an enhanced power when compared with the soliton case with a uniform dispersion. Such a pulse is now called dispersion managed (DM) soliton, and seems to be quite stable. This is one of the main object studied in this paper. We also discuss the deformation of the conventional non-return-to-zero (NRZ) pulse based on an integrable model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forysiak W., Knox F. M., and Doran N. J., J. Lightwave Technol. 12 (1994) 1330.

    Google Scholar 

  2. Kodama Y., Kumar S. and Hasegawa A., Dispersion managements on soliton transmission in fibres with lumped amplifiers (Physics and Applications of Optical Solitons in Fibres ‘85, Kluwer Academic Press, 1996) p.

    Google Scholar 

  3. V. Cautaerts et al

    Google Scholar 

  4. Kumar S., Hasegawa A., and Kodama Y., J. Opt. Soc. Am. B 14 (1997) 888.

    Article  ADS  Google Scholar 

  5. Doran N. J,Smith N. J., Forysiak W., and Knox F. M., Dispersion as control parameter in soliton transmission systems (Physics and Applications of Optical Solitons in Fibres ‘85, Kluwer Academic Press, 1996) p. 1.

    Google Scholar 

  6. Hasegawa A., Kumar S., and Kodama Y., Opt. Lett 21 (1996) 39.

    Article  ADS  Google Scholar 

  7. Okamawari T., Ueda Y., Maruta A., Kodama Y., and Hasegawa A., Electron. Lett 33 (1997) 1063.

    Google Scholar 

  8. Sugahara H., Kato H., and Kodama Y., Electron. Lett 33 (1997) 1065.

    Google Scholar 

  9. Forysiak W., Blow K. J., and Doran N. J., Electron. Lett 29 (1993) 1225.

    Google Scholar 

  10. Suzuki M., Morita I., Edagawa N., Yamamoto S., Taga H., and Akiba S., Electron. Lett 31 (1995) 2027.

    Google Scholar 

  11. Nakazawa M. and Kubota H Electron. Lett 31 (1995) 216.

    Google Scholar 

  12. Hasegawa A., Kodama Y., and Maruta A., Opt. Fiber Tech 3 (1997) 197.

    Article  ADS  Google Scholar 

  13. Smith N. J., Knox F. M., Doran N. J., Blow K. J., and Bennion I., Electron. Lett 32 (1996) 54.

    Article  Google Scholar 

  14. Georges T. and Charbonnier B IEEE Photon. Technol. Lett 9 (1997) 127

    Google Scholar 

  15. Sugahara H., Kato H., Inoue T., Maruta A. and Kodama Y., Optimal dispersion management for a wavelength-division-multiplexed optical soliton transmission, system in preparation.

    Google Scholar 

  16. Kodama Y., and Wabnitz S., Opt. Lett 20 (1995) 2291.

    Article  ADS  Google Scholar 

  17. Whitham G. B., Linear and Nonlinear Waves ( John Wiley, New York, 1974 )

    MATH  Google Scholar 

  18. Kodama Y., and Wabnitz S., Electron. Lett 31 (1995) 1761.

    Article  Google Scholar 

  19. Kodama Y., The Whitham Equations for Optical Communications: Mathemtical theory of NRZ,to appear in SIAM J. of Appl. Math (1999).

    Google Scholar 

  20. Nijhof.J.H.B Doran N. J., W. Forysiak, and Knox F. M., Elect. Lett 33 (1997) 1726.

    Google Scholar 

  21. Kodama Y., New Trends in Optical Soliton Transmission Systems (A. Hasegawa ed., Kyoto, 1998 ) p. 131–153.

    Book  Google Scholar 

  22. Lakoba T.I and Kaup D. J., Elect. Lett 34 (1998) 1124.

    Google Scholar 

  23. Lazardis P Debarge G. and Gallion P Opt. Lett 22 (199 7) 685.

    Google Scholar 

  24. Turitsyn S. K., Schäfer T. and Mezentsev V. K., Opt.Lett 23 (1998) 1351.

    Google Scholar 

  25. Mollenauer L. F., Evangelides S. G., and Gordon.J. P., J. Lightwave Technol 9 (1991) 362.

    Article  ADS  Google Scholar 

  26. Wabnitz S., Opt. Lett 22 (1997) 1695.

    Article  Google Scholar 

  27. Kumar S., Kodama Y., and Hasegawa A., Electron. Lett 33 (1997) 459.

    Article  Google Scholar 

  28. Forysiak W., Devaney J. F. L., Smith N. J., and Doran N. J., Opt. Lett 22 (199 7) 600.

    Google Scholar 

  29. Kodama Y. and Maruta A., Opt. Lett 22 (1997) 1692.

    Article  ADS  Google Scholar 

  30. Devaney J. F. L., Forysiak W., Niculae A. M., and Doran N. J., Opt. Lett 22 (199 7) 1695.

    Google Scholar 

  31. Hirooka T. and Hasegawa A., Opt. Lett 23 (1998) 768.

    Article  ADS  Google Scholar 

  32. Sugahara H Inoue T., Maruta A., and Kodama Y., Electron. Lett 34 (1998) 902.

    Google Scholar 

  33. Sugahara H., Maruta A., and Kodama Y., Opt. Lett 24 (1999) 145.

    Article  ADS  Google Scholar 

  34. Hasegawa A. and Kodama Y., Solitons in Optical Communications (Oxford U. Press, Oxford, 1995 ) p. 179–183.

    Google Scholar 

  35. Hasegawa A. and Kodama Y., Opt. Lett 16 (1991) 1385.

    Google Scholar 

  36. Kodama Y., Kumar S., and Maruta A., Opt. Lett 22 (1997) 1689.

    Google Scholar 

  37. Meccozzi A., J. Opt. Soc. Am. B 13 (1998) 152.

    Article  ADS  Google Scholar 

  38. Ablowitz M. J., Biondini G., Chakravarty S., and Horne R.. L., Opt. Com mun. 150 (1998) 305.

    Article  ADS  Google Scholar 

  39. Sugahara H Maruta A., and Kodama Y., Analysis of timing jitter in a wavelength-division-multiplexed dispersion managed. oliton transmission in preparation.

    Google Scholar 

  40. Flaschka H Forest M. G., and McLaughlin D. W, Comm Pure Appl. Math 33 (1980) 739.

    Google Scholar 

  41. Bloch A. M., and Kodama Y., SIAM J. App.’. Math. 52 (1992) 909.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cautaerts, V., Kodama, Y., Maruta, A., Sugahara, H. (1999). Nonlinear Pulses in Ultra-Fast Optical Communications. In: Zakharov, V.E., Wabnitz, S. (eds) Optical Solitons: Theoretical Challenges and Industrial Perspectives. Centre de Physique des Houches, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03807-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03807-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66314-0

  • Online ISBN: 978-3-662-03807-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics