Dispersion-Managed Solitons: Application to Terabit/s Transmission Over Transoceanic Distances

  • T. Georges
Conference paper
Part of the Centre de Physique des Houches book series (LHWINTER, volume 12)


The propagation of an optical pulse on a fibre can be approximated by the perturbed non-linear Schrödinger equation
$$i{q'_z} + \frac{1}{2}D\left( z \right){q''_{tt}} + a\left( z \right){\left| q \right|^2}q - in\left( {t,z} \right) = 0$$
where q(t,z) is proportional to electric field, t and z are the time and the distance, D(z) is the local second-order chromatic dispersion, a(z) is proportional to the nonlinear coefficient and to the energy (it takes into account the energy variations induced by the fibre loss and the amplifier gain) and n(t,z) is the amplifier noise. In a transmission link, the three terms can reduce the system performance. The first term (chromatic dispersion) broadens temporally the pulses but can be easily compensated by a chromatic dispersion of opposite sign. The influence of the last term (noise) can be reduced by increasing the signal power. Finally, the second term (Kerr effect) is responsible for a non-linear phase shift. Its interplay with the chromatic dispersion is responsible for pulse distortion. The trade-off in power between the noise and the non-linear effect is the base of the limitation of the product bit rate times transmission distance of classical transmission systems.


Lithium Soliton Expense Coupler Demultiplexing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Aubin, T. Montalant, J. Moulu, B. Nortier, F. Pirio, J.B. Thomine, F. Devaux, “20 Gbit/s soliton transmission over transoceanic distances with a 105 km amplifier span”, Electron. Lett., 31, n°13, 1995.Google Scholar
  2. 2.
    P.V. Mamyshev, L.F. Mollenauer, “Pseudo phase matched four-wave mixing in soliton WDM transmission”, Opt. Lett. 21, 1996.Google Scholar
  3. 3.
    L.F. Mollenauer, P.V. Mamyshev, M.J. Neubelt, “Demonstration of soliton WDM transmission at up to 8x10 Gbit/s error-free, over transoceanic distances”, OFC’96, PD22.Google Scholar
  4. 4.
    M. Nakazawa, K. Suzuki, H. Kubota, A. Sahara, E. Yamada, “100 Gbit/s WDM soliton transmission over 10,000 km using in-line synchronous modulation and optical filtering”, OFC’97, paper PD21.Google Scholar
  5. 5.
    A. Hasegawa, S. Kumar, and Y. Kodama, “Reduction of collision-induced time jitters in dispersion-managed soliton transmission”, Opt. Lett. 21, 39–41, 1996.ADSCrossRefGoogle Scholar
  6. 6.
    F. M. Knox, P. Harper, P. N. Kean, I. Bennion and N. J. Doran, “Soliton transmission at 10 Gbit/s over 2022 km of standard fibre with dispersion compensation”, ECOC’96, WeC.3. 2, pp. 101–104, 1996.Google Scholar
  7. 7.
    F. Favre, D. Le Guen, M.L. Moulinard, M. Henry, G. Michaud, F. Devaux, E. Legros, B. Charbonnier, T. Georges, “Demonstration of soliton transmission at 20 Gbit/s over 2200 km of standard fibre with dispersion compensation and pre-chirping”, Electron. Lett. 33, 511–512 (1997).CrossRefGoogle Scholar
  8. 8.
    D. Le Guen, F. Favre, M.L. Moulinard, M. Henry, G. Michaud, L. Macé, F. Devaux, B. Charbonnier, T. Georges, “200Gbit/s 100km-span soliton WDM transmission over 1000km of standard fibre with dispersion compensation and pre-chirping”, OFC’97 (Dallas), paper PD17.Google Scholar
  9. 9.
    D. Le Guen, F. Favre, M.L. Moulinard, M. Henry, G. Michaud, F. Devaux, B. Charbonnier, T. Georges, “320 Gbit/s soliton WDM transmission over 1100 km with 100 km dispersion-compensated spans of standard”, ECOC’97, Post-Deadline Session, 25–28.Google Scholar
  10. 10.
    D. Le Guen, A. O’Hare, S. Del Burgo, D. Grot, F. Favre and T. Georges, “Narrow band 640 Gbit/s soliton WDM transmission over 1200 km of standard fibre with 100 km — 21 dB amplifier spans”, ECOC’98 ( Madrid ), Post-deadline papers, pp. 61–63, 1998.Google Scholar
  11. 11.
    D. Le Guen, A. O’Hare, S. Del Burgo, D. Grot, F. Favre and T. Georges, «Narrow band 1.02 Tbit/s (51x20Gbit/s) soliton DWDM transmission over 1000 km of standard fibre with 100 km amplifier span », OFC’99 (San Diego, Feb 99), Post-deadline paper.Google Scholar
  12. 12.
    N. Edagawa, I. Morita, M. Suzuki, S. Yamamoto, H. Taga, S. Akiba, “20 Gbit/s, 8100 km straight-line single-channel soliton-based RZ transmission experiment using periodic dispersion compensation”, Proc. of 21st ECOC’95, Post-deadline paper ThA3.5, 983–986 (Brussels 1995 )Google Scholar
  13. 13.
    J. Jacob, E.A. Golovchenko, A.N. Philipetski; G.M. Carter, C.R. Menyuk, “Long-haul, 10 Gbit/s error-free transmission of NRZ data and dispersion-managerd solitons using the same transmission system”, ECOC’97 (Edinburgh), pp. 1. 11–1. 14.Google Scholar
  14. 14.
    H. Kubota, M. Nakazawa, “Partial soliton communication system”, Opt. Comm. 87, 15 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    F.M. Knox, W. Forysiak, N.J. Doran, “10 Gbit/s soliton communication systems over standard fibre at 1.55 µm and the use of dispersion compensation”, IEEE J. of Lightw. Technol. 13, 1955–1963 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    M. Suzuki et al. “Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission”, Electron. Lett. 31, 992 (1195).Google Scholar
  17. 17.
    I. Gabitov, S.K. Turitsyn, “Average pulse dynamics in a cascaded transmission system with passive dispersion compensation”, Opt. Lett. 21, 327–329 (1997).ADSGoogle Scholar
  18. 18.
    A.B. Grudinin, I.A. Goncharenko, “Increased amplifier spacing in soliton system with partial dispersion compensation”, Electron. Lett. 33, 1602–1603 (1997).CrossRefGoogle Scholar
  19. 19.
    T. Georges, “Extended path-averaged Soliton regime in highly dispersive fibers”, Optics Letters 22, 679 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    I. Gabitov, E.G. Shapiro, S.K. Turitsyn, “Optical pulse dynamics in fibre links with dispersion compensation”, Opt. Comm. 134, 317–329 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    B.A. Malomed, “Pulse propagation in a non-linear optical fibre with periodically modulated dispersion: variational approach”, Optics Comm. 136, 313–319 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    N.J. Smith, F.M. Knox, N.J. Doran, K.J. Blow, I. Bennion, “Enhanced power solitons in optical fibres with periodic dispersion-management”, Electron. Lett. 32, 54–55 (1996).CrossRefGoogle Scholar
  23. 23.
    M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, “Marked increase in the power margin through the use of a dispersion-allocated soliton”, IEEE Photon. Techn. Lett. 8, 1088–1090, 1996.ADSCrossRefGoogle Scholar
  24. 24.
    N.J. Smith, W. Forysiak, N.J. Doran, “Gordon-Haus jitter reduction in enhanced power soliton systems”, OFC’97 (Dallas), paper ThN5.Google Scholar
  25. 25.
    T. Georges, B. Charbonnier, “Pre-chirping and dispersion compensation for long-haul 20-Gbit/s soliton transmission at 1.55 µm on non dispersion shifted fibres”, OFC’97 (Dallas), paper WH2.Google Scholar
  26. 26.
    P.K.A. Wai, C.R. Menyuk, H.H. Chen, “Stability of solitons in randomly varying birefringent fibres”, Opt. Lett. 16, 12131–1233 (1991).Google Scholar
  27. 27.
    A.B. Grudinin, I.A. Goncharenko, S. Gray and D.N. Payne, Proc. of 21st ECOC’95, paper TuL1.3, 295–298 (Brussels, 1995 ).Google Scholar
  28. 28.
    F. Favre, D. Le Guen, F. Devaux, “4x20Gbit/s soliton WDM transmission over 2000km with 100km dispersion-compensated spans of standard fibre”, Electron. Lett. 33, 1234–1235 (1997).CrossRefGoogle Scholar
  29. 29.
    E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, M.Nakazawa, “Numerical and experimental comparison between the dispersion-allocated soliton, RZ and NRZ pulses at zero group velocity dispersion”, ECOC’97 (Edinburgh), pp. 3. 327–3. 330.Google Scholar
  30. 30.
    A.B. Grudinin, M. Durkin, M. Ibsen, R.I. Laming, A. Schiffini, P. Franco, E. Grandi, M. Romagnoli, “Straight-line 10Gbit/s soliton transmission over 100km of standard fibre with in-line chirped fibre grating for partial dispersion compensation”, Electron. Lett. 33, 1572–1573 (1997).CrossRefGoogle Scholar
  31. 31.
  32. 32.
    A. Hasegawa, Y. Kodama, Oxford series in optical and imaging science, 7 (1995).Google Scholar
  33. 33.
    N. Kikuchi, S. Sasaki, K. Sekine, “10 Gbit/s dispersion-compensated transmission over 2245 km conventional fibres in a recirculating loop”, Electron. Lett. 31, 375–377 (1995)CrossRefGoogle Scholar
  34. 34.
    R.W. Tkach, R.M. Derosier, F. Forghieri, A.H. Gnauk, A.M. Vengsarkar, D.W. Peckham, J.L. Zyskind, J.W. Sulhoff, A.R. Chraplyvy,“Transmission of 8 20-Gbit/s channels over 232 km of conventional fibre”, IEEE Photon. Techn. Lett. 7 (Nov. 1995).Google Scholar
  35. 35.
    P.K.A. Wai, C.R. Menyuk, H.H. Chen, “Effects of randomly varying birefringence on soliton interactions in optical fibres”, Opt. Lett. 16, 1735–1737 (1991).ADSCrossRefGoogle Scholar
  36. 36.
    D. Anderson, Phys. Rev. A 6, 3135–3137 (1983), T. Ueda, W.L. Kath, Phys. Rev. A 42, 563–570 (1990).Google Scholar
  37. 37.
    H. Onaka, H. Miyata, G. Ishikawa, K. Otsuka, H. Ooi, Y. Kai, S. Kinoshita, M. Seino, H. Nishimoto, and T. Chikama, “ 1.1 Tbit/s WDM transmission over a 150 km 1 3 mm zero-dispersion single-mode fibre”, OFC’96 (San Jose), PD19, 1996.Google Scholar
  38. 38.
    A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J; W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jobson, F. Forghieri, R. M. Derosier, C. Wolf and A. R. McCormick, “One Terabit/s transmission experiment”, OFC’96 (San Jose), PD20, 1996.Google Scholar
  39. 39.
    T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Ushiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori and H. Ono, “100 Gbit/s x 10 channel OTDM/WDM transmission using a single supercontinuum WDM source”, OFC’96 (San Jose), PD21, 1996.Google Scholar
  40. 40.
    T. Ito, T. Ono, Y. Yano, K. Fukuchi, H. Yamazaki, M. Yamaguchi, and K. Emura, “Feasibility study on over 1 bit/s/Hz high spectral efficiency WDM with optical duobinary coding and polarisation interleave multiplexing”, OFC’97, TuJ1, 1997.Google Scholar
  41. 41.
    S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, O. Kamatani and H. Takahashi,“1.4 Tbit/s (200 Gbit/s x 7 ch) 50 km optical transmission experiment”, Electron. Lett., vol. 33, no. 20, pp. 1716–1717, 1997.Google Scholar
  42. 42.
    A. K. Srivastava, Y. Sun, J. W. Sulhoff, C. Wolf, M. Zirngibl, R. Monnard, A. R. Chraplyvy, A. A. Abramov, R. P. Espindola, T. A. Strasser, J. R. Padrazzani, A. M. Vengsarkar, J. L. Zyskind, J. Zhou, D. A. Ferrand, P. L. Wysocki, J. B. Judkins and Y. P. Li, “lTbit/s transmission of 100 WDM 10 Gbit/s channels over 100 km of TrueWave fibre”, OFC’98 (San Jose), PD10, 1998.Google Scholar
  43. 43.
    S. Aisawa, T. Sakamoto, M. Fukui, J. Kani, M. Jinno, and K. Oguchi, “Ultra-wide band, long distance WDM transmission demonstration: 1 Tbit/s (50x20 Gbit/s), 600 km transmission using 1550 and 1580 nm wavelength bands”, OFC’98 (San Jose), PD11, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • T. Georges
    • 1
  1. 1.France Télécom, CNETLannionFrance

Personalised recommendations