Skip to main content

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 12))

  • 291 Accesses

Abstract

Since the early days of laser studies and nonlinear optics, it was realized that the parabolic potential with a negative curvature created by diffraction could be compensated by self-action. In other words the electrical field could dig a potential with positive curvature the depth of which proportional to the electric field intensity self-trappring a portion of the laser field and thus creating a wave which propagates in a recurring fashion: a soliton.[1] However it was quickly realized that such an elegant idea would not work for laser beams with two spatial transverse dimensions and a purely Kerr third order nonlinearity.[2]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.Y. Chiao, E. Garmire, C.H. Townes, “Self Trapping of Optical Beams”, Phys. Rev. Lett., 13, 479 (1964).

    Article  ADS  Google Scholar 

  2. P.L. Kelley, “Self-Focusing of Optical Beams”, Phys. Rev. Lett., 15, 1005 (1965).

    Article  ADS  Google Scholar 

  3. V.E. Zakharov, V.V. Sobolev, V.C. Synakh, “Behavior of Light Beams in Nonlinear Media”, JETP, 33, 77 (1971).

    ADS  Google Scholar 

  4. V.E. Zakharov, A.B. Shabat, “Exact Theory of Two-Dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, JETP, 34, 62 (1972).

    MathSciNet  ADS  Google Scholar 

  5. V.E. Zakharov, V.S. Synakh, “The nature of the self-focusing singularity”, JETP, 41, 465 (1976).

    ADS  Google Scholar 

  6. W.E. Torruellas, B. Lawrence, G.I. Stegeman, “Self-Focusing and Two Dimensional Solitons in PTS” Elect. Lett., 32, 2092 (1996).

    Article  Google Scholar 

  7. S.A. Akhmanov, R.V. Khokhlov, A.P. Sukhorukov, “Self-focusing, self-defocusing and self-modulation of laser beams”, Laser Handbook, Ed. F.T. Arecchi, E.O. Schultz-DuBois, North Holland Publ. Co., (1972).

    Google Scholar 

  8. J.H. Marburger, “Self-Focusing: Theory”, Prog. Quant. Elect., 4, 35, (1975).

    Article  ADS  Google Scholar 

  9. J.E. Bjorkholm, A. Ashkin, “CW Self-focusing and self-trapping of Light in Sodium Vapor”, Phys. Rev. Lett., 32, 129 (1974).

    Article  ADS  Google Scholar 

  10. E. Yablonovitch, N. Bloembergen, “Avalanche Ionization and the Limiting Diameter of Filaments Induced by Light Pulses in Transparent Media”, Phys. Rev. Lett., 29, 907 (1972).

    Article  ADS  Google Scholar 

  11. A. Braun, G. Korn, X. Liu, D.Du, J. Squier, G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air”, Opt. Lett., 20, 73 (1995).

    Article  ADS  Google Scholar 

  12. M.D. Feit, J.A. Fleck, “Beam nonparaxaility, filament formation, and beam breakup in the self-focusing of optical beams”, J.O.S.A. B., 5, 633 (1988).

    Google Scholar 

  13. N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, “Does the nonlinear Schroedinger equation correctly describe beam propagation?”, 18, 411 (1993).

    Google Scholar 

  14. J.J. Rasmussen, K. Rypdal, “Blow-up in Nonlinear Shroedinger Equation-A General Review”, Physica Scritpta, 33, 481 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Y. Silberberg, “Collapse of Optical Pulses”, Opt. Lett., 15, 1282 (1990).

    Article  ADS  Google Scholar 

  16. L.F. Mollenauer, “Solitons in Optical fibres and the soliton laser”, Phil. Trans. R. Soc. Lond., A 315, 437 (1985).

    Article  ADS  Google Scholar 

  17. C.R. Menyuk, “Why are solitons robust in Optical Fibers”, pg. 457 in Guided Wave Nonlinear Optics, Eds. D.B. Ostrowsky and R. Reinish, Kluwer Academic Pub., The Netherlands (1992).

    Google Scholar 

  18. J.S. Aitchison, A.M. Weiner, Y. Silberberg, M.K. Oliver, J.L. Jackel, D.E. Leaird, E.M. Vogel, P.W.E. Smith, “Observation of spatial optical solitons in nonlinear glass waveguide”, Opt. Lett., 15, 471 (1990).

    Article  ADS  Google Scholar 

  19. A. Barthelemy, C. Froehly, S. Maneuf, F. Reynaud, “Experimental observation of beams’ self-deflection appearing with two-dimensional spatial soliton propagation in bulk Kerr material”, Opt. Lett., 17, 844 (1992).

    Google Scholar 

  20. G. Khitrova, H.M. Gibbs, Y. Kawamura, H. Iwamura, T. Ikegami, J.E. Sipe, L. Ming, “Spatial Solitons in a Self-Focusing Semiconductor Gain Medium”, 70, 920 (1993).

    Google Scholar 

  21. J.E. Sipe, “Gap Solitons”, pg 305 in Guided Wave Nonlinear Optics, Eds. D.B. Ostrowsky and R. Reinish, Kluwer Academic Publishers, The Netherlands (1992).

    Google Scholar 

  22. B.J. Eggleton, R.E. Slusher, C. Martijn de Sterke, P.A. Krug, J.E. Sipe, “Bragg Grating Solitons”, Phys. Rev. Lett., 76, 1627 (1996).

    Article  ADS  Google Scholar 

  23. Y.S. Kivshar, “Dark Solitons in Nonlinear Optics”, 29, 250 (1993).

    Google Scholar 

  24. S.R. Skinner, G.R. Allan, D.R. Andersen, A.L. Smirl, “Dark Spatial Soliton Propagation in Bulk ZnSe”, I. E.E.E. J.Q.E., 27, 2211 (1991).

    Google Scholar 

  25. M. Morin, G. Duree, G. Salamo, M. Segev, “Waveguides formed by quasi- steady-state photorefractive spatial solitons”, Opt. Lett., 20, 2066 (1995).

    Article  ADS  Google Scholar 

  26. M. Chauvet, S.A. Hawkins, G.J. Salamo, M. Segev, D.F. Bliss, G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe”, Opt. Lett., 21, 1333 (1996).

    Article  ADS  Google Scholar 

  27. A.A. Zozulya, M. Saffman, D.Z. Anderson, “Propagation of light Beams in Photorefractive Media: Fanning, Self-bending, and Formation of Self-Pumped Four-Wave-Mixing Phase Conjugation Geometries”, Phys. Rev. Lett., 73, 818 (1994).

    Article  ADS  Google Scholar 

  28. A.V. Mamaev, M. Saffman, A.A. Zozulya, “Break-up of two-dimensional bright spatial solitons due to transverse modulational instability”, EuroPhys. Lett., 35, 25 (1996).

    Article  ADS  Google Scholar 

  29. F. Lederer, W. Biehlig, “Bright solitons and light bullets in semiconductor waveguides”, El. Lett., 30, 1871 (1994).

    Article  Google Scholar 

  30. C.J. Hamilton, B. Vogele, J.S. Aitchison, G.T. Kennedy, W. Sibbett, W. Biehlig, U. Peschel, T. Peschel, F. Lederer, “Bright solitary pulses in AlGaAs waveguides at half the band gap”, Opt. Lett., 21, 1226 (1996).

    Article  ADS  Google Scholar 

  31. B. Luther-Davies, X. Yang, “Steerable optical waveguides formed in self- defocusing media by using dark spatial solitons”, Opt. Lett., 17, 1755 (1992).

    Article  ADS  Google Scholar 

  32. A.W. Snyder, S.J. Hewlett, D.J. Mitchell, “Dynamic Spatial Solitons”, Phys. Rev. Lett., 72, 1012 (1994).

    Article  ADS  Google Scholar 

  33. L. Poladian, A.W. Snyder, D.J. Mitchell, “Spiralling spatial solitons”, Opt. Comm., 85, 59 (1991).

    Article  ADS  Google Scholar 

  34. J.E. Rothemberg, “Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses”, Opt. Lett., 17, 1340 (1992).

    Article  ADS  Google Scholar 

  35. D.A. Kleinman, A. Ashkin, G.D. Boyd, “Second Harmonic Generation of Light by Focused Laser Beams”, Phys. Rev., 145, 338 (1966).

    Article  ADS  Google Scholar 

  36. V.E. Zakharov, S.V. Manakov, “resonant Interaction of Wave Packets in Nonlinear Media”, ZhETF Pis. Red. 18, 413 (1973).

    Google Scholar 

  37. Y.N. Karamzin, A.P. Sukhorukov, “Nonlinear Interaction of diffracted light beams in a medium with quadratic nonlinearity: mutual focusing of beams and limitation on the efficiency of optical frequency converters”, JETP, 20, 339 (1974); Y.N. Karamzin, A.P. Sukhorukov, JETP, 41, 414 (1976).

    Google Scholar 

  38. A.E. Kaplan, “Eigenmodes of k(2) wave mixings: cross-induced second- order nonlinear refraction”, Opt. Lett., 18, 1223 (1993).

    Article  ADS  Google Scholar 

  39. R. Schiek, “Nonlinear refraction caused by cascaded second-order nonlinearity in optical waveguide structures”, J.O.S.A. B., 10, 1848 (1993).

    Google Scholar 

  40. M.J. Werner, P.D. Drummond, “Simulton solutions for the parametric amplifier”, J.O.S.A. B., 10, 1390 (1993); M.J. Werner, P.D. Drummond, “Strongly coupled nonlinear parametric solitary waves”, Opt. Lett., 19, 613 (1994).

    Google Scholar 

  41. A.V. Buryak, Y.S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity”, Opt. Lett., 19, 1612 (1994).

    Article  ADS  Google Scholar 

  42. L. Tomer, C.R. Menyuk, G.I. Stegeman, “Bright solitons with second-order nonlinearities”, J.O.S.A. B., 12, 889 (1995).

    Google Scholar 

  43. W.E. Torruellas, Z. Wang, D.J. Hagan, E.W. VanStryland, G.I. Stegeman, L. Tomer, C.R. Menyuk, “Observation of two-Dimensional Spatial Solitary Waves in a Quadratic Medium”, Phys. Rev. Lett., 74, 5036 (1995).

    Article  ADS  Google Scholar 

  44. W.E. Torruellas, G. Assanto, B.L. Lawrence, R.A. Fuerst, G.I. Stegeman, “All-optical switching by spatial walk-off compensation and solitary-wave locking”, Appl. Phys. Lett., 68, 1449 (1996).

    Article  ADS  Google Scholar 

  45. A.A. Kanashov, A.M. Rubenshik, “On diffraction and dispersion effect on three wave interaction”, Physica D 4, 122 (1981).

    Article  ADS  MATH  Google Scholar 

  46. I.P. Christov, H.C. Kapteyn, M.M. Murnane, C.P. Huang, J. Zhou, “Space-time focusing offemtosecond pulses in a Ti:sapphire laser”, Opt. Lett., 20, 309 (1995).

    Article  ADS  Google Scholar 

  47. C.L. Tang, H. Statz, “Maximum Emission Principle and Phase locking in Multimode Lasers”, Jour. Appl. Phys., 38, 2963 (1967).

    Article  ADS  Google Scholar 

  48. T.F. Carruthers, I.N. Duling, “Passive laser mode locking with an antiresonant nonlinear mirror”, Opt. Lett., 15, 804 (1990).

    Article  ADS  Google Scholar 

  49. K.A. Stankov, “25ps pulses from a Nd: YAG laser mode locked by a frequency doubling BaB2O4 crystal”, Appl. Phys. Lett., 58, 2203 (1991).

    Article  ADS  Google Scholar 

  50. K.A. Stankov, V.P. Tzolov, M.G. Mirkov, “Frequency-domain analysis of the mode-locking process in a laser with a second-harmonic nonlinear mirror”, Opt. Lett., 16, 639 (1991).

    Article  ADS  Google Scholar 

  51. X.M. Zhao, D.J. McGraw, “Parametric Mode Locking”, I. E.E.E. J.Q.E., 28, 930 (1992).

    Article  Google Scholar 

  52. M.B. Danailov, G. Cerullo, V. Magni, D. Segala, S. De Silvestri, “Nonlinear mirror mode locking of a cw Nd: YLF laser”, 19, 792 (1994).

    Google Scholar 

  53. G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, V. Magni, “Self-starting mode locking of a cw Nd: YAG laser using cascaded second-order nonlinearities”, Opt. Lett., 20, 746 (1995).

    Article  ADS  Google Scholar 

  54. G. Cerullo, V. Magni, A. Monguzzi, “Group-velocity mismatch compensation in continuous-wave lasers mode locked by second-order nonlinearities”, 20, 1785 (1995).

    Google Scholar 

  55. N.N. Akhmediev, V.I. Komeev, R.F. Nabiev, “Modulational instability of the ground state of the nonlinear wave equation: optical machine gun”, Opt. Lett., 17, 393 (1992).

    Article  ADS  Google Scholar 

  56. S. Trillo, S. Wabnitz, R. Chisari, G. Cappellini, “Two-wave mixing in a quadratic nonlinear medium: bifurcations, spatial instabilities, and chaos”, Opt. Lett., 17, 637 (1992)

    Article  ADS  Google Scholar 

  57. S. Longhi, “Effects of dispersion on mode locking in optical parametric oscillators”, Opt. Lett., 20, 1628 (1995).

    Article  ADS  Google Scholar 

  58. S. Longhi, A. Geraci, “Modulational instability oscillation and solitary waves in a nonlinear dispersive cavity with parametric gain”, Appl. Phys. Lett., 67, 3060 (1995).

    Article  ADS  Google Scholar 

  59. S. Trillo, M. Haelterman, “Pulse-train generation through modulational instability in intracavity second-harmonic generation”, Opt. Lett., 21, 1114 (1996).

    Article  ADS  Google Scholar 

  60. D.T. Reid, J.M. Dulley, M. Ebrahimzadeh, W. Sibbett, “Soliton formation in a femtosecond optical parametric oscillator”, Opt. Lett., 19, 825 (1994).

    Article  ADS  Google Scholar 

  61. J.D.V. Khaydarov, J.H. Andrews, K.D. Singer, “Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch”, Opt. Lett, 19, 831 (1994).

    Article  ADS  Google Scholar 

  62. F. Hache, A. Zeboulon, G. Gallot, G.M. Gale, “Cascaded second-order effects in the femtosecond regime in barium borate: self-compression in a visible femtosecond optical parametric oscillator”, Opt. Lett., 20, 1556 (1995).

    Article  ADS  Google Scholar 

  63. G.M. Gale, M. Cavallari, T.J. Driscoll, F. Hache, “Sub-20-fs tunable pulses in the visible from an 82 MHz optical parametric oscillator”, Opt. Lett., 20, 1562 (1995).

    Article  ADS  Google Scholar 

  64. G.S. McDonald, W.J. Firth, “Spatial solitary-wave optical memory”, J.O.S.A. B., 7, 1328 (1990).

    Google Scholar 

  65. W.J. Firth, A.J. Scroggie, “Optical Bullet Holes: Robust Controllable Localized States of a Nonlinear Cavity”, Phys. Rev. Lett., 76, 1623 (1996).

    Article  ADS  Google Scholar 

  66. L.A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, R.J. Horowitz, “Bistability, Self-Pulsing and Chaos in Optical Parametric Oscillators”, Il Nuovo Cimento, 10, 959 (1988).

    Article  Google Scholar 

  67. G.L. Oppo, M. Brambilla, D. Camesasca, A. Gatti, L.A. Lugiato, “Spatiotemporal dynamics of optical parametric oscillator”, J. of Mod. Opt., 41, 1151 (1994).

    Article  ADS  Google Scholar 

  68. G.L. Oppo, M. Brambilla, L. A. Lugiato, “Formation and evolution of roll patterns in optical parametric oscillators”, Phys. Rev. A, 49, 2028 (1994).

    Article  ADS  Google Scholar 

  69. L.A. Lugiato, S.M. Barnett, M. Brambilla, A. Gatti, I. Marzoli, G.L. Oppo, F. Prati, M. Stefani, M. Travagnin, H. Wiedemann, “Nonlinear optical patterns: classical and quantum effects, perspective for applications”, Phil. Trans. R. Soc. Lond. A 354, 767 (1996).

    Article  ADS  Google Scholar 

  70. W.R. Bosenberg, A. Drobshoff, J.I. Alexander, L.E. Myers, R.L. Byer, “93% pump depletion, 3.5W continuous wave, singly resonant, optical parametric oscillator”, Opt. Lett., 21, 1336 (1996).

    Article  ADS  Google Scholar 

  71. J.D. Kafka, M.L. Watts, J.W. Pieterse, J. Opt. Soc. Am. B, 12, 1085 (1995); G.M. Gale, M. Cavallari, T.J. Driscoll, F. Hache, “Sub-20-fs tunable pulses in the visible from an 82 MHz optical parametric oscillator”, Opt. Lett., 20, 1562 (1995); G. Cerullo, M. Nisoli, S. de Silvestri, “Generation of 11 fs pulses tunable across the visible by optical parametric amplification”, Appl. Phys. Lett., 71, 3616 (1997).

    Google Scholar 

  72. O. Bang, “Dynamical equations for wave packets in materials with both quadratic and cubic response”, J. Opt. Soc. Am. B, 14, 51 (1997).

    Article  ADS  Google Scholar 

  73. F. Hache, A. Zeboulon, G. Gallot, G.M. Gale, “Cascaded second order effects in the femtosecond regime in fl-barium-borate: self-compression in a visible femtosecond optical parametric oscillator”, Opt. Lett., 20, 1556 (1995).

    Article  ADS  Google Scholar 

  74. D.T. Reid, J.M. Dudley, M. Ebrahimzadeh, W. Sibbett, “Soliton formation in a femtosecond optical parametric oscillator”, Opt. Lett., 19, 825 (1994).

    Article  ADS  Google Scholar 

  75. H. Haus, J.G. Fugimoto, E. Ippen, “Analytic theory of additive pulse and Kerr lens Mode-Locking”, IEEE J.Q.E., 28, 2086 (1992)

    Google Scholar 

  76. N.R. Pereira, L. Stenflo, “Nonlinear Schrodinger equation including growth and damping”, Phys. Fluids, 20, 1733 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. N. Akhmediev, A. Ankiewicz, Solitons, “Nonlinear Pulses and beams”, ( Chapman & Hall, London, 1997 ).

    Google Scholar 

  78. B. Malomed, A.A. Nepomnyashchy, “Kinks and solitons in the generalized Ginzburg-Landau equation”, Phys. Rev. A, 42, 6009 (1990).

    Article  ADS  Google Scholar 

  79. V. Hakim, P. Jakobsen, Y. Pomeau, “Fronts vs. Solitary Waves in Nonequilibrium Systems”, Europhys. Lett., 11, 19 (1990).

    Article  ADS  Google Scholar 

  80. W. san Saarloos, P.C. Hohenberg, “Pulses and Fronts in the Complex Ginzburg-Landau Equation near a Subcritical Bifurcation”, Phys. Rev. Lett., 64, 749 (1990).

    Article  ADS  Google Scholar 

  81. J.M. Soto-Crespo, N.N. Akhmediev, V.V. Afanasjev, “Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation”, Jour. Opt. Soc. Am. B, 13, 1439 (1996).

    Article  ADS  Google Scholar 

  82. K. Staliunas, “Three-dimensional Turing Structures and Spatial Solitons in Optical Parametric Oscillators”, Phys. Rev. Lett., 81, 81 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torruellas, W.E., Jian, P.S., Trillo, S., Haelterman, M., Peschel, U., Lederer, F. (1999). Solitons in Cavities with Quadratic Nonlinearities. In: Zakharov, V.E., Wabnitz, S. (eds) Optical Solitons: Theoretical Challenges and Industrial Perspectives. Centre de Physique des Houches, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03807-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03807-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66314-0

  • Online ISBN: 978-3-662-03807-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics