Skip to main content

Self-Structuration of Three-Wave Dissipative Solitons in CW-Pumped Optical Cavities

  • Conference paper
Optical Solitons: Theoretical Challenges and Industrial Perspectives

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 12))

Abstract

Generation of ultra-short optical pulses in cw-pumped ring cavities are mostly associated to mode locking in active media, as doped fibers or solid-state (e.g. Ti-Sa) lasers. The cavity contains not only a gain element (atoms or ions) but also a nonlinear element of the host medium, such as self-phase modulation (SPM) or intensity dependent absorption. Spontaneous generation of a pulse train in cw-pumped optical fiber cavities without gain elements can been also obtained through modulation instability caused by the combined action of SPM and group-velocity dispersion (GVD) on the CW optical beam [1]. Our aim here is to present another mechanism for pulse generation in a ring cavity due to the three-wave counterstreaming interaction. In this case, nanosecond pulses are spontaneously generated in a cw-pump Brillouin-fiber-ring laser [2]. We show that the same three-wave counterstreaming interaction responsible of symbiotic solitary wave morphogenesis in the Brillouin-fiber-ring laser [3] may act for picosecond pulse generation in a quadratic optical cavity (optical parametric oscillator) [4]. The resonant condition is automatically satisfied in stimulated Brillouin backscattering (SBS) when the fiber-ring laser contains a large number of longitudinal modes beneath the gain curve, since the cw-pump selects among them the resonant acoustic wave (of wavelength near the half of the pump- or Stokes- wavelength). However, in order to achieve quasi-phase matching between the three optical waves in the x (2) medium a grating of sub-μm period is required. Recent experiments of backward second-harmonic generation in periodically-poled LiNbO3 [5, 6] avoids this technical difficulty by using higher-order gratings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal G.P., Post B., Nonlinear Fiber Optics 2nd ed. New York: Academic ( 1995.

    Google Scholar 

  2. Picholle E., Montes C., Leycuras C., Legrand O., and Botineau J., Phys. Rev. Lett. 66 (1991) p. 1454.

    Article  ADS  Google Scholar 

  3. Montes C.) MamhoudA., and Picholle E., Phys. Rev. A 49 (1994) 1344.

    Google Scholar 

  4. Picozzi A. and Haelterman M., Opt. Lett. 23 (1998) 1808.

    Article  ADS  Google Scholar 

  5. Kang J.U., Ding Y.J., Burns W.K.; and Melinger J.S., Opt. Lett. 22 (1997) 862.

    Article  ADS  Google Scholar 

  6. Gu X, Korotkov R.Y., Ding Y.J., Kang J.U., and Khurgin J.B., J. Opt. Soc. Am. B 15 (1998) 1561.

    Google Scholar 

  7. Armstrong J.A., Jha S.S., and Shiren N.S., IEEE J. Quant. Elect. QE-6 (1970) 123.

    Google Scholar 

  8. Kaup D.J., Reiman A., and Bers A., Rev. Mod. Phys. 51 (1979) 275.

    Article  MathSciNet  ADS  Google Scholar 

  9. Nozaki K. and Taniuti T., J. Phys. Soc. Jpn. 34 (1973) 796.

    Article  ADS  Google Scholar 

  10. Trillo S., Opt. Lett. 21 (1996) 1111.

    Article  ADS  Google Scholar 

  11. McCall S.L. and Hahn E.L., Phys. Rev. Lett. 18 (1967) 908.

    Article  ADS  Google Scholar 

  12. Montes C., Picozzi A., and Bahloul D., Phys. Rev. E 55 (1997) 1092.

    Google Scholar 

  13. Morozov S.F., Piskunova L.V., Sushchik M.M., and Freidman G.I., Sov. J. Quant. Electron. 8 (1978) 576.

    Article  ADS  Google Scholar 

  14. Craik A.D.D., Nagata M., and Moroz I.M., Wave Motion 15 (1992) 173.

    Article  MathSciNet  MATH  Google Scholar 

  15. Botineau J., Leycuras C., Montes C., and Picholle E., Opt. Commun. 109 (1994) 126.

    ADS  Google Scholar 

  16. Yang S.T., Eckaerdt R.C., and Byer R.L., J. Opt. Soc. Am. B 10 (1993) 1684.

    Google Scholar 

  17. D'Alessandro G., Russel P.St.J., and Wheeler A.A., Phys. Rev. A 55 (1997) 3211.

    Article  ADS  Google Scholar 

  18. Trillo S. and Haelterman M., Opt. Lett. 21 (1996) 1114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montes, C., Picozzi, A., Haelterman, M. (1999). Self-Structuration of Three-Wave Dissipative Solitons in CW-Pumped Optical Cavities. In: Zakharov, V.E., Wabnitz, S. (eds) Optical Solitons: Theoretical Challenges and Industrial Perspectives. Centre de Physique des Houches, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03807-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03807-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66314-0

  • Online ISBN: 978-3-662-03807-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics