Advertisement

Self-Structuration of Three-Wave Dissipative Solitons in CW-Pumped Optical Cavities

  • C. Montes
  • A. Picozzi
  • M. Haelterman
Conference paper
Part of the Centre de Physique des Houches book series (LHWINTER, volume 12)

Abstract

Generation of ultra-short optical pulses in cw-pumped ring cavities are mostly associated to mode locking in active media, as doped fibers or solid-state (e.g. Ti-Sa) lasers. The cavity contains not only a gain element (atoms or ions) but also a nonlinear element of the host medium, such as self-phase modulation (SPM) or intensity dependent absorption. Spontaneous generation of a pulse train in cw-pumped optical fiber cavities without gain elements can been also obtained through modulation instability caused by the combined action of SPM and group-velocity dispersion (GVD) on the CW optical beam [1]. Our aim here is to present another mechanism for pulse generation in a ring cavity due to the three-wave counterstreaming interaction. In this case, nanosecond pulses are spontaneously generated in a cw-pump Brillouin-fiber-ring laser [2]. We show that the same three-wave counterstreaming interaction responsible of symbiotic solitary wave morphogenesis in the Brillouin-fiber-ring laser [3] may act for picosecond pulse generation in a quadratic optical cavity (optical parametric oscillator) [4]. The resonant condition is automatically satisfied in stimulated Brillouin backscattering (SBS) when the fiber-ring laser contains a large number of longitudinal modes beneath the gain curve, since the cw-pump selects among them the resonant acoustic wave (of wavelength near the half of the pump- or Stokes- wavelength). However, in order to achieve quasi-phase matching between the three optical waves in the x (2) medium a grating of sub-μm period is required. Recent experiments of backward second-harmonic generation in periodically-poled LiNbO3 [5, 6] avoids this technical difficulty by using higher-order gratings.

Keywords

Solitary Wave Optical Parametric Oscillator Pump Intensity Idle Wave Solitary Wave Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Agrawal G.P., Post B., Nonlinear Fiber Optics 2nd ed. New York: Academic ( 1995.Google Scholar
  2. [2]
    Picholle E., Montes C., Leycuras C., Legrand O., and Botineau J., Phys. Rev. Lett. 66 (1991) p. 1454.ADSCrossRefGoogle Scholar
  3. [3]
    Montes C.) MamhoudA., and Picholle E., Phys. Rev. A 49 (1994) 1344.Google Scholar
  4. [4]
    Picozzi A. and Haelterman M., Opt. Lett. 23 (1998) 1808.ADSCrossRefGoogle Scholar
  5. [5]
    Kang J.U., Ding Y.J., Burns W.K.; and Melinger J.S., Opt. Lett. 22 (1997) 862.ADSCrossRefGoogle Scholar
  6. [6]
    Gu X, Korotkov R.Y., Ding Y.J., Kang J.U., and Khurgin J.B., J. Opt. Soc. Am. B 15 (1998) 1561.Google Scholar
  7. [7]
    Armstrong J.A., Jha S.S., and Shiren N.S., IEEE J. Quant. Elect. QE-6 (1970) 123.Google Scholar
  8. [8]
    Kaup D.J., Reiman A., and Bers A., Rev. Mod. Phys. 51 (1979) 275.MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    Nozaki K. and Taniuti T., J. Phys. Soc. Jpn. 34 (1973) 796.ADSCrossRefGoogle Scholar
  10. [10]
    Trillo S., Opt. Lett. 21 (1996) 1111.ADSCrossRefGoogle Scholar
  11. [11]
    McCall S.L. and Hahn E.L., Phys. Rev. Lett. 18 (1967) 908.ADSCrossRefGoogle Scholar
  12. [12]
    Montes C., Picozzi A., and Bahloul D., Phys. Rev. E 55 (1997) 1092.Google Scholar
  13. [13]
    Morozov S.F., Piskunova L.V., Sushchik M.M., and Freidman G.I., Sov. J. Quant. Electron. 8 (1978) 576.ADSCrossRefGoogle Scholar
  14. [14]
    Craik A.D.D., Nagata M., and Moroz I.M., Wave Motion 15 (1992) 173.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Botineau J., Leycuras C., Montes C., and Picholle E., Opt. Commun. 109 (1994) 126.ADSGoogle Scholar
  16. [16]
    Yang S.T., Eckaerdt R.C., and Byer R.L., J. Opt. Soc. Am. B 10 (1993) 1684.Google Scholar
  17. [17]
    D'Alessandro G., Russel P.St.J., and Wheeler A.A., Phys. Rev. A 55 (1997) 3211.ADSCrossRefGoogle Scholar
  18. [18]
    Trillo S. and Haelterman M., Opt. Lett. 21 (1996) 1114.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • C. Montes
    • 1
  • A. Picozzi
    • 2
  • M. Haelterman
    • 2
  1. 1.Laboratoire de Physique de la Matière Condensée, Centre National de la Recherche ScientifiqueUniversité de Nice — Sophia AntipolisNice Cedex 2France
  2. 2.Service d’Optique et d’AcoustiqueUniversité Libre de BruxellesBruxellesBelgique

Personalised recommendations