Self-Structuration of Three-Wave Dissipative Solitons in CW-Pumped Optical Cavities

  • C. Montes
  • A. Picozzi
  • M. Haelterman
Conference paper
Part of the Centre de Physique des Houches book series (LHWINTER, volume 12)


Generation of ultra-short optical pulses in cw-pumped ring cavities are mostly associated to mode locking in active media, as doped fibers or solid-state (e.g. Ti-Sa) lasers. The cavity contains not only a gain element (atoms or ions) but also a nonlinear element of the host medium, such as self-phase modulation (SPM) or intensity dependent absorption. Spontaneous generation of a pulse train in cw-pumped optical fiber cavities without gain elements can been also obtained through modulation instability caused by the combined action of SPM and group-velocity dispersion (GVD) on the CW optical beam [1]. Our aim here is to present another mechanism for pulse generation in a ring cavity due to the three-wave counterstreaming interaction. In this case, nanosecond pulses are spontaneously generated in a cw-pump Brillouin-fiber-ring laser [2]. We show that the same three-wave counterstreaming interaction responsible of symbiotic solitary wave morphogenesis in the Brillouin-fiber-ring laser [3] may act for picosecond pulse generation in a quadratic optical cavity (optical parametric oscillator) [4]. The resonant condition is automatically satisfied in stimulated Brillouin backscattering (SBS) when the fiber-ring laser contains a large number of longitudinal modes beneath the gain curve, since the cw-pump selects among them the resonant acoustic wave (of wavelength near the half of the pump- or Stokes- wavelength). However, in order to achieve quasi-phase matching between the three optical waves in the x (2) medium a grating of sub-μm period is required. Recent experiments of backward second-harmonic generation in periodically-poled LiNbO3 [5, 6] avoids this technical difficulty by using higher-order gratings.


Soliton Coupler 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agrawal G.P., Post B., Nonlinear Fiber Optics 2nd ed. New York: Academic ( 1995.Google Scholar
  2. [2]
    Picholle E., Montes C., Leycuras C., Legrand O., and Botineau J., Phys. Rev. Lett. 66 (1991) p. 1454.ADSCrossRefGoogle Scholar
  3. [3]
    Montes C.) MamhoudA., and Picholle E., Phys. Rev. A 49 (1994) 1344.Google Scholar
  4. [4]
    Picozzi A. and Haelterman M., Opt. Lett. 23 (1998) 1808.ADSCrossRefGoogle Scholar
  5. [5]
    Kang J.U., Ding Y.J., Burns W.K.; and Melinger J.S., Opt. Lett. 22 (1997) 862.ADSCrossRefGoogle Scholar
  6. [6]
    Gu X, Korotkov R.Y., Ding Y.J., Kang J.U., and Khurgin J.B., J. Opt. Soc. Am. B 15 (1998) 1561.Google Scholar
  7. [7]
    Armstrong J.A., Jha S.S., and Shiren N.S., IEEE J. Quant. Elect. QE-6 (1970) 123.Google Scholar
  8. [8]
    Kaup D.J., Reiman A., and Bers A., Rev. Mod. Phys. 51 (1979) 275.MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    Nozaki K. and Taniuti T., J. Phys. Soc. Jpn. 34 (1973) 796.ADSCrossRefGoogle Scholar
  10. [10]
    Trillo S., Opt. Lett. 21 (1996) 1111.ADSCrossRefGoogle Scholar
  11. [11]
    McCall S.L. and Hahn E.L., Phys. Rev. Lett. 18 (1967) 908.ADSCrossRefGoogle Scholar
  12. [12]
    Montes C., Picozzi A., and Bahloul D., Phys. Rev. E 55 (1997) 1092.Google Scholar
  13. [13]
    Morozov S.F., Piskunova L.V., Sushchik M.M., and Freidman G.I., Sov. J. Quant. Electron. 8 (1978) 576.ADSCrossRefGoogle Scholar
  14. [14]
    Craik A.D.D., Nagata M., and Moroz I.M., Wave Motion 15 (1992) 173.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Botineau J., Leycuras C., Montes C., and Picholle E., Opt. Commun. 109 (1994) 126.ADSGoogle Scholar
  16. [16]
    Yang S.T., Eckaerdt R.C., and Byer R.L., J. Opt. Soc. Am. B 10 (1993) 1684.Google Scholar
  17. [17]
    D'Alessandro G., Russel P.St.J., and Wheeler A.A., Phys. Rev. A 55 (1997) 3211.ADSCrossRefGoogle Scholar
  18. [18]
    Trillo S. and Haelterman M., Opt. Lett. 21 (1996) 1114.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • C. Montes
    • 1
  • A. Picozzi
    • 2
  • M. Haelterman
    • 2
  1. 1.Laboratoire de Physique de la Matière Condensée, Centre National de la Recherche ScientifiqueUniversité de Nice — Sophia AntipolisNice Cedex 2France
  2. 2.Service d’Optique et d’AcoustiqueUniversité Libre de BruxellesBruxellesBelgique

Personalised recommendations