Skip to main content

Transient Raman Amplification

  • Conference paper
  • 295 Accesses

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 12))

Abstract

Raman scattering is a 3-wave interaction process which is nonlinear by essence, due to the wave coupling. It works as if the medium (a two-level system) would transfer the energy of the pump to the Stokes wave, hence depleting the pump. A classical treatment of Raman amplification consists in assuming an instantaneous response of the medium. In that case the problem is explicitely solvable but wipes out a lot of interesting aspects as for instance phase properties. We study here transient Raman scatering for which we first establish the basic equations including effects of group velocity dispersion. Although this results in a fully nonlinear process, we will derive explicit formula for the output intensities for arbitrary input pump and Stokes waves in a medium initially in the ground state. This formula will be then illustrated with three applications: the generation of Raman solitons from the boundaries, the spectral properties of the output pump, and the interpretation of the experiments of long pulse propagation in H 2 gas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.G. Raymer, I.A. Walmsley, Prog. in Optics, 28, 216 (1991)

    Google Scholar 

  2. M.G. Raymer, J. Mostowski, Phys. Rev. A 24, 1980 (1981)

    Article  ADS  Google Scholar 

  3. I.A. Walmsley, M.G. Raymer, Phys. Rev. Lett., 50, 962 (1983)

    Article  ADS  Google Scholar 

  4. N. Fabricius, K. Natterman, D. von der Linde, Phys. Rev. Lett., 52, 113 (1983)

    Article  ADS  Google Scholar 

  5. K. Drühl, R.G. Wenzel, J.L. Carlsten, Phys. Rev. Lett., 51, 1171 (1983)

    Article  ADS  Google Scholar 

  6. R.G. Wenzel, J.L. Carlsten, K. Drühl, J. Stat. Phys., 39, 621 (1985)

    Article  ADS  Google Scholar 

  7. J.C. Englund, C.M. Bowden, Phys. Rev. Lett., 57, 2661 (1986)

    Article  ADS  Google Scholar 

  8. D.C. MacPherson, R.C. Swanson, J.L. Carlsten, Phys. Rev. Lett. 61, 66 (1988)

    Article  ADS  Google Scholar 

  9. D.C. MacPherson, R.C. Swanson, J.L. Carlsten, Phys. Rev. A 40, 6745 (1989)

    Article  ADS  Google Scholar 

  10. J.C. Englund, C.M. Bowden, Phys. Rev. A 42, 2870 (1990); Phys. Rev. A 46, 578 (1992)

    Article  Google Scholar 

  11. D.C. MacPherson, R.C. Swanson, J.L. Carlsten, Phys. Rev. A 39, 6078 (1989).

    Article  ADS  Google Scholar 

  12. M. Scalora, J.W. Haus, J. Opt. Soc. Am. B 8, 1003 (1991).

    Article  ADS  Google Scholar 

  13. C. Claude, J. Leon, Phys. Rev. Lett., 74, 3479 (1995); C. Claude, F. Ginovart, J. Leon, Phys. Rev. A 52, 767 (1995).

    Article  ADS  Google Scholar 

  14. D.J. Kaup, C.R. Menyuk, Phys. Rev. A42, 1712 (1990). C.R. Menyuk, Phys. Rev. Lett., 62, 2937 (1989).

    Google Scholar 

  15. F.Y.F. Chu, A.C. Scott, Phys. Rev. A 12, 2060 (1975).

    Article  ADS  Google Scholar 

  16. S.L. McCall, E.L. Hahn, Phys. Rev. 183 and 457 (1969).

    Google Scholar 

  17. G L Lamb Jr, Phys. Rev. Lett., 31, 196 (1973).

    Article  Google Scholar 

  18. M.J. Ablowitz, P. Clarkson, Solitons, Nonlinear Evolutions and Inverse Scattering, Cambridge Univ. Press (1992)

    Google Scholar 

  19. J.C. Eilbeck, J.D. Gibbon, P.J. Caudrey, R.K. Bullough, J. Phys. A 6, 1337 (1973) G L Lamb Jr, Phys. Rev. A 8, 422 (1974). M.J. Ablowitz, D.J. Kaup, A.C. Newell, J. Math. Phys. 15, 1852 (1974). G L Lamb Jr, Phys Rev A 12, 2052 (1975). D. J. Kaup, Phys. Rev. A, 16, 704 (1977).

    Google Scholar 

  20. D.J. KAUP, A.C. NEWELL, Adv Math 31, 67 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  21. I.R. Gabitov, V.E. Zakharov, A.V. Mikhailov, Teor. Mat. Fiz. 63, 11 (1985) [Theor. Math. Phys. 63, 328 (1985)]. Sov. Phys. JETP, 59, 703 (1984) [Zh. Eksp. Teor. Fiz. 37, 234 (1984)].

    Google Scholar 

  22. J. Leon, A.V. Mikhailov, Raman solitons and Raman spikes,Prepint Montpellier (1997), solv-int/9703007, sub. Phys. Lett. A.

    Google Scholar 

  23. A. Yariv, Quantum Electronics, J. Wiley (New York 1975 ).

    Google Scholar 

  24. A.C. Newell, J.V. Moloney, Nonlinear Optics, Addison-Wesley (Redwood City CA, 1992 ).

    Google Scholar 

  25. C.R. Menyuk, D. Levi, P. Winternitz, Phys. Rev. Lett. 69, 3048 (1992); D. Levi, C.R. Menyuk, P. Winternitz, Phys. Rev. A 44, 6057 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  26. A.S. Fokas and C.R. Menyuk, Journal of Nonlinear science, in press (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leon, J., Mikhailov, A.V. (1999). Transient Raman Amplification. In: Zakharov, V.E., Wabnitz, S. (eds) Optical Solitons: Theoretical Challenges and Industrial Perspectives. Centre de Physique des Houches, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03807-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03807-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66314-0

  • Online ISBN: 978-3-662-03807-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics