Skip to main content

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 12))

  • 297 Accesses

Abstract

Mode-locked fiber ring lasers and long distance soliton propagation in fibers display many similarities, but also differ in significant ways. This lecture will try to elucidate some of these issues. Digital signals transmitted over long distances call for maintenance of the pulses and suppression of noise in the intervals between pulses. This maintenance must be adequate over the total length of the fiber cable; it need not last forever. Solitons propagating along a fiber with a filter distribution have the desirable property that they are, in a sense self-stabilizing. Gain compensates for the loss produced by the filters. If the soliton grows in amplitude, it shrinks in width and its spectrum broadens. The filter loss increases, and the soliton amplitude growth is counteracted. Conversely, a soliton of decreased amplitude has a narrower spectrum and less filter loss. The pulse experiences net gain that brings it back to the steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Tamura K., Jacobson J., Ippen E. P., Haus H. A., Fujimoto J. G., Opt. Lett. 18 (1993) 220.

    Article  ADS  Google Scholar 

  2. Haus H. A., Fujimoto J. G., Ippen E. P., J. Opt. Soc. Am. B 8 (1991) 2068.

    Article  ADS  Google Scholar 

  3. Haus H. A., in Compact Sources of Ultrashort Pulses, I. N. Duling, III, Ed., Cambridge Studies in Modern Optics, 1997.

    Google Scholar 

  4. Kuizenga D: J., Siegman A. E., IEEE J. Quantum Electron. 6 (1970) 694.

    Article  ADS  Google Scholar 

  5. Kelly S. M. J, Electron. Lett. 28 (1992) 806.

    Article  Google Scholar 

  6. Tamura K., Doerr C. R., Haus H. A., Ippen E. P., IEEE Photon. Technol. Lett. 6 (1994) 697.

    Article  ADS  Google Scholar 

  7. Siegman A., in Lasers, Mill Valley, CA, University Science Books, 1986.

    Google Scholar 

  8. Doerr C. R., Haus H. A., Ippen E. P., Shirasaki M., Tamura K., Opt. Lett. 19 (1994) 31.

    Article  ADS  Google Scholar 

  9. Doerr C. R., Haus H. A., Ippen E. P., Opt. Lett. 19 (1994) 1958.

    Article  ADS  Google Scholar 

  10. Haus H. A., Jones D. J., Ippen E. P., Wong W. S., J. Lightwave Technol. 14 (1996) 622.

    Article  ADS  Google Scholar 

  11. Nakazawa M., Yamada E., Kubota H., Suzuki K., Electron Lett. 27 (1991) 1370.

    Google Scholar 

  12. Haus H. A., Mecozzi A., Opt. Lett. 17 (1992) 1500.

    Google Scholar 

  13. Doerr C. R., Wong W. S., Haus H. A., Ippen E. P., Opt. Lett. 19 (1994) 1747.

    Article  ADS  Google Scholar 

  14. Hall K. L., Rauschenbach K. A., IEEE Photonics Technol. Lett. 10 (1998) 442.

    Article  ADS  Google Scholar 

  15. Jones D. J., Hall K. L., Haus H. A., Ippen E. P., Opt. Lett. 23 (1998) 177.

    Article  ADS  Google Scholar 

  16. Gordon J. P., Opt. Lett. 8 (1983) 596.

    Article  ADS  Google Scholar 

  17. Haus H. A., Lai Y., J. Opt. Soc. Am. B 7 (1990) 386.

    Article  ADS  Google Scholar 

  18. Gordon J. P., Haus H. A., Opt. Lett. 11 (1986) 665.

    Article  ADS  Google Scholar 

  19. Tamura K., Ippen E. P., Haus H. A., Nelson L. E., Opt. Lett. 18 (1993) 1080.

    Google Scholar 

  20. Haus H. A., Tamura K., Nelson L. E., Ippen E. P., IEEE J. Quantum Electron. 31 (1995) 591.

    Article  ADS  Google Scholar 

  21. Tamura K., Ippen E. P., Haus H. A., Appl. Phys. Lett. 67 (1995) 158.

    Google Scholar 

  22. Jones D. J., Haus H. A., Nelson L. E., Ippen E. P., IEICE Trans. Electron. E81-C (1998) 180.

    Google Scholar 

  23. Namiki S., Yu, C. X., Haus H. A., J. Opt. Soc. Am. B 13 (1996) 2817.

    Google Scholar 

  24. Namiki S., Haus H. A., IEEE J. Quantum Electron. 33 (1997) 649.

    Article  ADS  Google Scholar 

  25. Boivin L., Nuss M. C., Cundiff S. T., Knox W. H., Stark J. B., “103-channel chirped-pulse WDM transmitter,” OFC’97 (Optical Society of America), Technical Digest, 1997, paper ThI2.

    Google Scholar 

  26. Nijhof J. H. B., Doran N. J., Forysiak W., Knox F. N., Electron Lett. 33 (1997) 1726.

    Google Scholar 

  27. Matsumoto M., Haus H. A., IEEE Photon. Technol. Lett. 9 (1997) 785.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haus, H.A. (1999). Mode-Locked Fiber Ring Lasers and Fiber Ring Memories. In: Zakharov, V.E., Wabnitz, S. (eds) Optical Solitons: Theoretical Challenges and Industrial Perspectives. Centre de Physique des Houches, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03807-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03807-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66314-0

  • Online ISBN: 978-3-662-03807-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics