Skip to main content

Conventional Imaging Methods

  • Chapter
Book cover Magnetic Resonance Imaging

Abstract

In this chapter we shall describe, more formally than in Chap. 1, excitation, precession, and relaxation on the basis of the Bloch equation. These are the elements that we need in order to discuss the conventional scan methods called Spin Echo (SE) and Field Echo (FE). For better understanding, and also as a preparation for the discussion of the modern fast and ultra-fast methods, we introduce the concept of k space. The fundamental artifacts of SE and FE will be treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nuclear Induction, F. Bloch, Phys. Rev., 70, p. 460, 1946

    Article  ADS  Google Scholar 

  2. Magnetic Resonance Imaging D. Stark and W.G. Bradley, Mosby Year Book, St Louis, 1992, Chapter 4

    Google Scholar 

  3. A k-space Analysis of Small Tip Angle Excitation, J. Pauli, D. Nishimura, A. Mackovski J. Magn. Res., 81, pp. 43–56, 1989

    Google Scholar 

  4. A Linear Class of Large Tip Angle Selective Excitation Pulses, J. Pauli, D. Nishimura, A. Mackovski, J. Magn. Res., 82, pp. 571–587, 1989

    Google Scholar 

  5. The Art of Pulse Crafting, W.S. Warren, MS. Silver, Advances in Magnetic Resonance, Volume 12, Academic Press New York, 1988, pp. 247–388

    Google Scholar 

  6. Parameter Relations for the Shinnar—Le Roux Selective Pulse Design Algorithm, P. le Roux, D. Nishimura, A. Mackowsky IEEE Trans. on Med. Imaging, 10, pp. 53–65, 1991

    Article  Google Scholar 

  7. Variable Rate Selective Excitation, S. Conolly, D. Nishimura, A. Mackovsky J. Magn. Res., 78, pp. 440–458, 1988

    Google Scholar 

  8. IEC 601–1, 1988 and IEC 601–1–1, 1992, Part 2 Particular Requirements for Safety of Nuclear Resonance Equipment

    Google Scholar 

  9. E.L. Hahn, Spin Echoes, Phys. Rev., 20 (4), p. 580, 1950

    Article  ADS  Google Scholar 

  10. Proton NMR Tomography, P.R. Locher, Philips Technical Review, 41, pp. 73–88, 1983

    Google Scholar 

  11. Application of Reduced Encoding Imaging with Generalized-Series Reconstruction (RIGR) in Dynamic MR Imaging, S. Chandra, Z.-P. Liang, A.Webb, H. Lee, H. Douglas Morris, P.C. Lauterbur, J. Magn. Res. Im., 6, 783–797, 1996

    Article  Google Scholar 

  12. Keyhole“ Method for Accelerating Imaging Contrast Agent Uptake, J.J. v. Vaals, M.E. Brummer, W.T. Dixon, H.H. Tuithof, H. Engels, R.C. Nelson, B.M. Gerity, J.L. Chezmar, J.A. den Boer, J. Magn. Res. Im.,3, 671–675, 1993

    Google Scholar 

  13. Rapid Images and MR Movies, A. Haase, J. Frahm, O. Matthaei, K.D. Merboldt, W. Heanike SMRM Book of Abstracts, 1985, pp. 980–981

    Google Scholar 

  14. Very Fast MR Imaging by Field Echos and Small Angle Excitation, P.v.d. Meulen, J.P. Groen, J.M. Cuppen Magn. Res. Im., 3, pp. 297–299, 1985

    Article  Google Scholar 

  15. Artifacts in Magnetic Resonance Imaging, R.M. Henkelman, M. J. Bronskill Reviews of Magnetic Resonance in Medicine, 2 (1), 1987

    Google Scholar 

  16. Analysis of T2 Limitations and Off Resonance Effects on Spatial Resolution and Artifacts in Echo Planar Imaging, F. Farzaneh, S.J. Riederer, N.J. Pelc Magn. Res. in Med.,14, pp. 123–139, 1990

    Google Scholar 

  17. Short TI Inversion Recovery Sequence: Analyses and Initial Experience in Cancer Imaging, A.J. Dwyer et al. Radiology, 169, pp. 827–836, 1988

    Google Scholar 

  18. 1H NMR Chemical Shift Imaging, A. Haase, J. Frahm, W. Hänicke, D. Matthaei Phys. Med. Biology,30(4), pp. 341–344, 1985

    Google Scholar 

  19. Proton Spin Relaxation Studies of Fatty Tissue and Cerebral White Matter, R.L. Kamman, K.G. Go, A.J. Muskiet, G.P. Stomp, P.v. Dijk, H.J.C. Berendsen Magn. Res. In. Med., 2, pp. 211–220, 1984

    Google Scholar 

  20. Contrast between White and Grey Matter: MRI Appearance with Aging, S. Magnaldi, M. Ukmar, R. Longo, R.S. Pozzi-Mocelli Eur. Rad., 3, pp. 513–319, 1993

    Article  Google Scholar 

  21. Sensitivity Encoding for Fast MRI, K.P. Preussmann, M. Weiger, M.B. Scheidegger, P. Boesinger, Submitted to Magn. Res. in Med.,1998

    Google Scholar 

  22. Simultaneous Acquisition of Spatial Harmonics (SMASH): Ultra Fast Imaging with Radiofrequency Coil Arrays, D.K. Sodickson, W.J. Manning, Magn. Res. in Med.,38, 591–603, 1997

    Google Scholar 

  23. MRI Scan Time Reduction through Non-Uniform Sampling,G.J. Marseille, Doctoral Thesis, Technical University of Delft, The Netherlands, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vlaardingerbroek, M.T., den Boer, J.A. (1999). Conventional Imaging Methods. In: Magnetic Resonance Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03800-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03800-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03802-4

  • Online ISBN: 978-3-662-03800-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics