Advertisement

Magnetic Resonance Imaging: A Historical Introduction

  • A. L. Luiten

Abstract

The discovery and development of magnetic resonance imaging is one of the most spectacular and successful events in the history of medical imaging. However, there is a time gap of almost thirty years between the discovery of nuclear magnetic resonance simultaneously and independently by Bloch [1] and by Purcell [2] in 1946 and the first imaging experiments in the 1970s by Lauterbur and by Damadian.

Keywords

Sensitive Line Gradient Echo Historical Introduction Excitation Technique Applied Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nuclear induction, F. Bloch, W.W. Hanson, M.E. Packard. Phys. Rev., 69, p. 127, 1946ADSCrossRefGoogle Scholar
  2. 2.
    Resonance absorption by nuclear magnetic moments in solid, E.M. Purcell, H.C. Torrey, R.V. Pound, Phys. Rev., 69, p. 37, 1946CrossRefGoogle Scholar
  3. 3.
    Mesure de temps de relaxation T2 en présence d’une inhomogeneité de champs magnétique supérieur à la largeur de raie, R. Gabillard, CR Acad. Sci. Paris, 232, 1951Google Scholar
  4. 4.
    Tumor detection by nuclear magnetic resonance, R. Damadian, Science, 171, p. 1151, 1971CrossRefGoogle Scholar
  5. 5.
    Image formation by induced local interactions: examples of employing nuclear magnetic resonance, P.C. Lauterbur, Nature,242 p. 190, 1973Google Scholar
  6. 6.
    Tumor imaging in a live animal by field focussing NMR (FONAR), R. Damadian et al., Physiol. Chem. Phys., 8, p. 61, 1976Google Scholar
  7. 7.
    Apparatus and method for detecting cancer in tissue. R. Damadian, US Patent No 3789823 filed 17 March 1972Google Scholar
  8. 8.
    Magnetic Resonance Zeugmatography, P.C. Lauterbur et al., Proc XVIII Ampere Congress, Nottingham (Amsterdam, North Holland, 1974) pp. 27–29Google Scholar
  9. 9.
    Spin mapping: the application of moving gradients to NMR, W.S. Hinshaw, Phys. Letters 48A, p. 78, 1974Google Scholar
  10. 10.
    Image formation by nuclear magnetic resonance: the sensitive point method, W.S. Hinshaw, J. Appl. Phys.,47, p. 3709, 1976Google Scholar
  11. 11.
    Radiographic thin-section image of the wrist by nuclear magnetic resonance, W.S. Hinshaw, P.A. Bottomley, G.N. Holland, Nature (London), 270, p. 723, 1977CrossRefGoogle Scholar
  12. 12.
    Display of cross sectional anatomy by nuclear magnetic resonance imaging, W.S. Hinshaw, E.R. Andrew, P.A. Bottomley et al., Br. J. Radiol. 51, p. 273, 1980CrossRefGoogle Scholar
  13. 13.
    Nuclear magnetic resonance tomography of the brain: A preliminary clinical assessment with demonstration of pathology, R.C. Hawkes, G.N. Holland, W.S. Moore et al., J. Comp. Assist. Tomography, 4 (5), p. 577, 1980CrossRefGoogle Scholar
  14. 14.
    Imaging by Nuclear Magnetic Resonance,J.M.S. Hutchison, Proc. 7th LH Gray Conf., Leeds (Wiley, Chichester, 1976) pp. 135–141Google Scholar
  15. 15.
    Image formation in NMR by a selective irradiative process, A.N. Garroway, P.K. Grannell, P. Mansfield, J. Phys. C, 7, p. 457, 1974CrossRefGoogle Scholar
  16. 16.
    Line scan proton spin imaging in biological structures by NMR, P. Mansfield, A.A. Maudsley, Phys. Med. Biol., 23, p. 847, 1976Google Scholar
  17. 17.
    Human whole body line scan imaging by NMR, P. Mansfield, I.L. Pykett, P.G. Morris et al., Br. J. Radiol., 52, p. 242, 1979CrossRefGoogle Scholar
  18. 18.
    NMR Fourier Zeugmatography, Kumar, D. Welti, R.R. Ernst, J. Magn. Res., 18, p. 69, 1975Google Scholar
  19. 19.
    Spin warp NMR imaging and applications to human whole-body imaging, W.A. Edelstein, J.M.S. Hutchison et al., Phys. Med. Biol., 25, p. 571, 1980CrossRefGoogle Scholar
  20. 20.
    NMR whole body imager operating at 3.5 kGauss, L.E. Crooks, J.C. Hoenninger, M. Arakawa et al., Radiology, 143, p. 169, 1982Google Scholar
  21. 21.
    Blood flow rates by NMR measurements. J.R. Singer, Science, 130, p. 1652, 1959ADSCrossRefGoogle Scholar
  22. 22.
    Direct cardiac NMR imaging of the heart wall and blood flow velocity. P. van Dijk, J. Comp. Assist. Tomogr., 429, 1984Google Scholar
  23. 23.
    Measurement of flow with NMR imaging using a gradient pulse and phase difference technique, D.J. Bryant et al., J. Comp. Assist. Tomogr., 8, p. 588, 1984CrossRefGoogle Scholar
  24. 24.
    Three-dimensional display of blood vessels in MRI,S. Rossnick, G. Laub, R. Braekle et al., Proc. IEEE Computers in Cardiology Conf. New York 1986, p. 193Google Scholar
  25. 25.
    NMR angiography based on inflow, J.P. Groen, R.G. de Graaf, P. van Dijk, Soc. Magn. Res. Imaging Med., 6th Annual meeting, August 20–26, 1988 San FranciscoGoogle Scholar
  26. 26.
    Three dimensional phase contrast angiography, C.L. Dumoulin, S.P. Souza et al., Magn. Res. Med., 9, p. 139, 1989CrossRefGoogle Scholar
  27. 27.
    The k-trajectory formulation of the NMR imaging process with application in analysis and synthesis of imaging methods. D.B. Twieg Med. Phys., 10, p. 610, 1983CrossRefGoogle Scholar
  28. 28.
    Very fast MR imaging by field echoes and small angle excitation, P. Van der Meulen, J.P. Groen, J.J.M. Cuppen, Magn. Res. Imag., 3, p. 297, 1985CrossRefGoogle Scholar
  29. 29.
    FLASH imaging. Rapid NMR imaging low flip angle pulses, A. Haase, J. Frahm, D. Matthaei et al., J. Magn. Res., 67, p. 258, 1986Google Scholar
  30. 30.
    RARE imaging: A fast imaging method for clinical MR, J. Hennig, A. Nauerth, H. Friedburg, Magn. Res. Med., 3, p. 823, 1986Google Scholar
  31. 31.
    Multiplanar image formation using NMR spin echoes, P. Mansfield, J. Phys. C: Solid State Phys., 10, L55, 1977CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • A. L. Luiten

There are no affiliations available

Personalised recommendations