Advertisement

Quality and Reliability Assurance During the Production Phase

  • Alessandro Birolini

Abstract

Reliability assurance has to be continued during the production phase, hand in hand with quality assurance activities, in particular concerning the monitoring and control of production processes and item’s configuration, the performance of in-process and final tests, the screening of critical components and assemblies, and the systematic collection, analysis, and correction of defects and failures. The last measure is basic for a learning process, whose aim is to optimize the quality of manufacture, taking into account cost and time schedule limitations. This chapter introduces the general aspects of quality and reliability assurance during production, discusses test and screening procedures for electronic components and assemblies, introduces the concept of a test and screening strategy, and discusses models for reliability growth during production. For specific poblems related to the qualification and monitoring of production processes, one should refer to the literature, e.g. [8.1 to 8.14].

Keywords

Solder Joint Thermal Cycle Screening Strategy Early Failure Reliability Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Production Processes

  1. [8.1]
    Desplas E.P., “Rel. in the manufacturing cycle”, Proc. Ann. Rel. & Maint. Symp., 1986, pp. 139–144.Google Scholar
  2. [8.2]
    DGQ 16–31/-32/-33: SPC 1/2/3 Statistische Prozesslenkung, 1990.Google Scholar
  3. [8.3]
    Ellis B.N., Cleaning and Contamination of Electronics Components and Assemblies, 1986, Electrochemical Publ., Ayr (Scotland).Google Scholar
  4. [8.4]
    Hnatek E. R., Integrated Circuit Quality and Reliability, 2nd Ed. 1999, Dekker, New York.Google Scholar
  5. [8.5]
    Grossmann G., “Contamination of various flux-cleaning combinations on SMT assemblies, Soldering & SMT, 22 (1996) Feb., pp. 16–21.Google Scholar
  6. [8.6]
    Lau J.H. et al, “Experimental & statistical analysis of surface-mount technology PLCC solder-joint reliability”, IEEE Trans. Rel., 37(1988)5, pp. 524–530.CrossRefGoogle Scholar
  7. [8.7]
    Lea C., A Scientific Guide to SMT, 1988, Electrochemical Publ., Ayr (Scotland).Google Scholar
  8. [8.8]
    Lenz E., Automatisiertes Löten elektronischer Baugruppen, 1985, Siemens, Munich.Google Scholar
  9. [8.9]
    Pawling J.F. (Ed.), Surface Mounted Assemblies, 1987, Electrochemical Publ., Ayr (Scotland).Google Scholar
  10. [8.10]
    Prasad R.P., Surface Mount Technology, 1989, Van Nostrand Reinhold, New York.Google Scholar
  11. [8.11]
    Shewhart W.A., “Quality control charts”, Bell Tech. Jurn., 5(1926) pp. 593–603.Google Scholar
  12. [8.12]
    Scraft R., Bleicher M. (Eds.), Oberflächenmontage elektron. Bauelemente, 1987, Hütig, Heidelberg.Google Scholar
  13. [8.13]
    Vardaman J. (Ed.), Surface Mount Technology: Recent Jap. Dev, 1993, IEEE Press, Piscataway NJ.Google Scholar
  14. [8.14]
    Wassink R.J.K., Soldering in Electronic, 2nd Ed. 1989, Electrochemical Publ., Ayr (Scotland).Google Scholar
  15. [3.71]
    ASM, Packaging, Vol.1, 1989, ASM Int., Material park OH.Google Scholar
  16. [3.72]
    Barker D.B., Dasgupta A., Pecht M., “Printed-wiring-board solder-joint fatigue-life calculation under thermal and vibration loading”, Proc. Ann. Rel. & Maint. Symp., 1991, pp. 451–459.Google Scholar
  17. [3.73]
    Ciappa M., Malberti P., “Reliability of laser-diode modules in temperature-uncontrolled env.”, Int. Rel. Phy. Symp., 1994, pp. 466–469; — and Scacco P., “Selective back-etch for silicon devices.”, Proc. ISTFAV5, Santa Clara CA, 1995, pp. 257–261.Google Scholar
  18. [3.74]
    Darveause R. and Banerji K., “Constitutive relations for tin-based solder joints.”, IEEE Trans. Compon., Pack., and Manuf. Technoi, 15 (1992) 6, pp.1013–1024.Google Scholar
  19. [3.75]
    Engelmaier, W., “Enviromental stress screening and use enviroments — their impact on solder joint and plated-through-hole reliability”, Proc. Int. Electronics Packaging Conf, Marlborough MA, 1990, pp. 388 – 393;Google Scholar
  20. [3.75]
    Engelmaier, W., and Attarwala A.I., “Surface-mount attachment boards”, IEEE Trans., Compon., Pack., andManuf. technol., 12(1989)2, pp. 284–289.Google Scholar
  21. [3.76]
    ETH Zurich, Rel. Lab., Reports P3-PI6 and PI8: Qualification Tests on 7 Telecom. Equip., 1989–91.Google Scholar
  22. [3.77]
    Fenech A., Hijagi A., Danto Y., “Determination of thermomechanical behaviour of microel. packaging based on mictostructural analysis”, Proc. ESREF” 94, Glasgow, 1994, pp. 405 – 410.Google Scholar
  23. [3.78]
    Frear D.R.(Ed.), The Mechanics of Solder Alloy Interconnections, 1994, Van Nostrand Reinhold, N. Y.Google Scholar
  24. [3.79]
    Grossmann G., Zuverlässigkeit von Weichlotstellen, 1993, Report L29, ETH Zurich, Rel. Lab.; Produktion und Prüfung von Testprints der SMT Fine Pitch, 1996, Rep.K12, ETH Zurich, Rel.Lab.; “Metallurgical consid. for acc. testing of el. equip.”, IEEE Trans. Comp., Pack. & Manuf. Technol., 20(1997)2, pp. 213–218; “The deformation of Sn62Pb36Ag2 and its impl. on the design of acc. tests for solder joints”, IEEE Trans. Comp., Pack.& Manuf. Technol., 22(1999)1, pp. 71–79; — et al, “Properties of thin layers of Sn62Pb36Ag2”, Proc. 1995 IEMT Symp., pp. 502–507; “Metallurgical consid. for accel. testing of el. equip.”, Proc. 1996 IEMT Symp., pp. 298–304; “Lifetime ass. of soft sold. joints on the base of the behav. of Sn62Pb36Ag2”, Proc. 1997 IEMT Symp., pp.256–263.Google Scholar
  25. [3.80]
    Heiduschke K., “The logarithmic strain space description”, Int. J. Solids Structures, 32 (1995), pp. 1047–1062MATHCrossRefGoogle Scholar
  26. [3.80a]
    Heiduschke K., “The logarithmic strain space description”, Int. J. Solids Structuresand 33(1996) pp. 747–760; Kontinuumsmech. und Finite Element Modellierung (Software package URMEL), 1996, Report Kll, ETH Zurich, Rel. Lab.; — and Grossmann G., “Modeling fatigue cracks with spatial shape”, Proc. EuPac ′94, Essen 1994, pp. 16–23.MATHCrossRefGoogle Scholar
  27. [3.81]
    IEEE, Special issue on: Plastic Encapsulated Microcircuits, IEEE Trans. Rel., 42(1993)4.Google Scholar
  28. [3.82]
    Jacob P., Held M., Scacco P., “Reliability Testing and Analysis of IGBT Power Semiconductor Modules “, Proc. ISTFA’94, Los Angeles CA 1994, pp. 319 – 325.Google Scholar
  29. [3.83]
    Lau J., Harkins G., Rice D., Kral J., “Thermal fatigue reliability of SMT packages and interconnections”, Proc. Int. Rel. Phys. Symp., 1987, pp. 250–259.Google Scholar
  30. [3.84]
    Lin R., Blackshear E, Serisky P., “Moisture induced cracking in plastic encapsulated SMD during solder reflow process”, Proc. Int. Rel. Phys. Symp., 1988, pp. 83–89.Google Scholar
  31. [3.85]
    Pecht M., “A model for moisture induced corrosion failures in microelectronic packages”, IEEE Trans. Comp., Pack., and Manuf. Technoi, 13(1990)2, pp. 383–389; (Ed.) Handbook of Electronic Package Design, 1991, Dekker, New York; — and Ramappan V., “Are components still the major problem: a review of electronic system and device field failure reurns”, IEEE Trans. Comp., Pack., and Manuf. Technoi, 15(1992)6, pp. 1160–1164.Google Scholar
  32. [3.86]
    Philofsky E., “Design limits when using Au-Al bonds”, Proc. Int. Rel. Phys. Symp., 1986, pp.114–19.Google Scholar
  33. [3.87]
    Solomon H.D. et al. (Ed.), Low Cycle Fatigue, 1988, ASTM, Philadelphia.Google Scholar
  34. [3.88]
    Weber L., Material- & Schädigungsmodell bei Pb-Zn-Ag-Lot,1996, Rep.KlO, ETH Zurich,Rel. Lab.; Creep-fatigue behaviour ofeutectic Sn62Pb36Ag2 solder, 1997, Ph.D.Thesis 12251, ETH Zurich.Google Scholar

Test and Screening Stategies

  1. [8.21]
    Bennetts R.G., Introduction to Digital Board Testing, 1981, Crane Russak, New York.Google Scholar
  2. [8.22]
    Birolini A., “Möglichkeiten und Grenzen der Qualifikation, Prüfung und Vorbeh. von ICs”, QZ, 27(1982)11, pp. 321–326; “Prüfung und Vorbeh. von Bauelementen und Leiterplatten”, VDI-Bericht Nr. 519, pp. 49–61 1984; “VLSI testing and screening”, Jorunal of Env. Sciences (IES), May/June 1989, pp. 42–48; “Matériels électroniques: stratégies de test et de déverminage”, La Revue des Lab. d’Essais, 1989 pp. 18–21; — and Grossmann G., “Experimentelle Ergebnisse zur Qualität und Zuverlässigkeit der SMT mit Pitch 0.5 mm”, me (1995) 5, pp. 28–33.Google Scholar
  3. [8.23]
    Bullock M., “Designing SMT boards for in-circuit testab”, Proc. Int. Test Conf, 1987, pp.606–613.Google Scholar
  4. [8.24]
    De Cristoforo R.J., “Environmental stress screening — lesson learned”, Proc. Ann. Rel. & Maint. Symp., 1984, pp. 129–133.Google Scholar
  5. [8.25]
    Desplas E., “Reliability in the manuf. cycle”, Proc. Ann. Rel. & Maint. Symp., 1986, pp. 139–144.Google Scholar
  6. [8.26]
    Geniaux B. et al, Déverminage des matériels électroniques, 1986, ASTE, Paris; “Climatique et déverminage”, La Revue des Lab. d’essais, Sept. 1989, pp. 5–8.Google Scholar
  7. [8.27]
    IEC 61163: Rel Stress ScreeningPart 1: Repair. Items, 1995; — Part 2: Electronic Comp., 1998.Google Scholar
  8. [8.28]
    IES, Environmental Stress Screening Guideline for Assemblies, 1988; Guidelines for Parts, 1985; Environmental Test Tailoring, 1986; Environmental Stress Screening, 1989.Google Scholar
  9. [8.29]
    Kallis J.M., Hammond W.K., Curry B., “Stress screening of electronic modules: Investigation of effects of temp. rate-of-change”, Proc. Ann. Rel. & Maint. Symp., 1990, pp. 59–66.Google Scholar
  10. [8.30]
    Kindig W., McGrath J., “Vibration, random required”, Proc.Ann.Rel.&Maint.Symp., 1984, pp.143–47.Google Scholar
  11. [8.31]
    MIL-HDBK-344: Environmental Stress Screening of Electronic Equipment, 1986; see also -HDBK-263, -STD-810, -STD-883, and -STD-2164.Google Scholar
  12. [8.32]
    Parker P., Webb C., “A study of failures identified during board level environmental stress testing”, IEEE Tran. Comp. Pack., and Manuf Technol., 15(1992)6, pp. 1086–1092.Google Scholar
  13. [8.33]
    Pynn C., Strategies for Electronics Test, 1986, McGraw-Hill, New York.Google Scholar
  14. [8.34]
    Wennberg S.R., Freyler C.R., “Cost-effective vibration testing for automotive electronic”, Proc. Ann. Rel. & Maint. Symp., 1990, pp. 157–159.Google Scholar
  15. [3.71]
    ASM, Packaging, Vol.1, 1989, ASM Int., Material park OH.Google Scholar
  16. [3.72]
    Barker D.B., Dasgupta A., Pecht M., “Printed-wiring-board solder-joint fatigue-life calculation under thermal and vibration loading”, Proc. Ann. Rel. & Maint. Symp., 1991, pp. 451–459.Google Scholar
  17. [3.73]
    Ciappa M., Malberti P., “Reliability of laser-diode modules in temperature-uncontrolled env.”, Int. Rel. Phy. Symp., 1994, pp. 466–469; — and Scacco P., “Selective back-etch for silicon devices.”, Proc. ISTFAV5, Santa Clara CA, 1995, pp. 257–261.Google Scholar
  18. [3.74]
    Darveause R. and Banerji K., “Constitutive relations for tin-based solder joints.”, IEEE Trans. Compon., Pack., and Manuf. Technoi, 15 (1992) 6, pp.1013–1024.Google Scholar
  19. [3.75]
    Engelmaier, W., “Enviromental stress screening and use enviroments — their impact on solder joint and plated-through-hole reliability”, Proc. Int. Electronics Packaging Conf, Marlborough MA, 1990, pp. 388 – 393;Google Scholar
  20. [3.75]
    Engelmaier, W., and Attarwala A.I., “Surface-mount attachment boards”, IEEE Trans., Compon., Pack., andManuf. technol., 12(1989)2, pp. 284–289.Google Scholar
  21. [3.76]
    ETH Zurich, Rel. Lab., Reports P3-PI6 and PI8: Qualification Tests on 7 Telecom. Equip., 1989–91.Google Scholar
  22. [3.77]
    Fenech A., Hijagi A., Danto Y., “Determination of thermomechanical behaviour of microel. packaging based on mictostructural analysis”, Proc. ESREF” 94, Glasgow, 1994, pp. 405 – 410.Google Scholar
  23. [3.78]
    Frear D.R.(Ed.), The Mechanics of Solder Alloy Interconnections, 1994, Van Nostrand Reinhold, N. Y.Google Scholar
  24. [3.79]
    Grossmann G., Zuverlässigkeit von Weichlotstellen, 1993, Report L29, ETH Zurich, Rel. Lab.; Produktion und Prüfung von Testprints der SMT Fine Pitch, 1996, Rep.K12, ETH Zurich, Rel.Lab.; “Metallurgical consid. for acc. testing of el. equip.”, IEEE Trans. Comp., Pack. & Manuf. Technol., 20(1997)2, pp. 213–218; “The deformation of Sn62Pb36Ag2 and its impl. on the design of acc. tests for solder joints”, IEEE Trans. Comp., Pack.& Manuf. Technol., 22(1999)1, pp. 71–79; — et al, “Properties of thin layers of Sn62Pb36Ag2”, Proc. 1995 IEMT Symp., pp. 502–507; “Metallurgical consid. for accel. testing of el. equip.”, Proc. 1996 IEMT Symp., pp. 298–304; “Lifetime ass. of soft sold. joints on the base of the behav. of Sn62Pb36Ag2”, Proc. 1997 IEMT Symp., pp.256–263.Google Scholar
  25. [3.80]
    Heiduschke K., “The logarithmic strain space description”, Int. J. Solids Structures, 32 (1995), pp. 1047–1062MATHCrossRefGoogle Scholar
  26. [3.80a]
    Heiduschke K., “The logarithmic strain space description”, Int. J. Solids Structuresand 33(1996) pp. 747–760; Kontinuumsmech. und Finite Element Modellierung (Software package URMEL), 1996, Report Kll, ETH Zurich, Rel. Lab.; — and Grossmann G., “Modeling fatigue cracks with spatial shape”, Proc. EuPac ′94, Essen 1994, pp. 16–23.MATHCrossRefGoogle Scholar
  27. [3.81]
    IEEE, Special issue on: Plastic Encapsulated Microcircuits, IEEE Trans. Rel., 42(1993)4.Google Scholar
  28. [3.82]
    Jacob P., Held M., Scacco P., “Reliability Testing and Analysis of IGBT Power Semiconductor Modules “, Proc. ISTFA’94, Los Angeles CA 1994, pp. 319 – 325.Google Scholar
  29. [3.83]
    Lau J., Harkins G., Rice D., Kral J., “Thermal fatigue reliability of SMT packages and interconnections”, Proc. Int. Rel. Phys. Symp., 1987, pp. 250–259.Google Scholar
  30. [3.84]
    Lin R., Blackshear E, Serisky P., “Moisture induced cracking in plastic encapsulated SMD during solder reflow process”, Proc. Int. Rel. Phys. Symp., 1988, pp. 83–89.Google Scholar
  31. [3.85]
    Pecht M., “A model for moisture induced corrosion failures in microelectronic packages”, IEEE Trans. Comp., Pack., and Manuf. Technoi, 13(1990)2, pp. 383–389; (Ed.) Handbook of Electronic Package Design, 1991, Dekker, New York; — and Ramappan V., “Are components still the major problem: a review of electronic system and device field failure reurns”, IEEE Trans. Comp., Pack., and Manuf. Technoi, 15(1992)6, pp. 1160–1164.Google Scholar
  32. [3.86]
    Philofsky E., “Design limits when using Au-Al bonds”, Proc. Int. Rel. Phys. Symp., 1986, pp.114–19.Google Scholar
  33. [3.87]
    Solomon H.D. et al. (Ed.), Low Cycle Fatigue, 1988, ASTM, Philadelphia.Google Scholar
  34. [3.88]
    Weber L., Material- & Schädigungsmodell bei Pb-Zn-Ag-Lot,1996, Rep.KlO, ETH Zurich,Rel. Lab.; Creep-fatigue behaviour ofeutectic Sn62Pb36Ag2 solder, 1997, Ph.D.Thesis 12251, ETH Zurich.Google Scholar

Reliability Growth

  1. [8.41]
    Barlow R., Bazovsky I., Wechsler S., “Classical and Bayes approach to ESS- a comparison”, Proc. Ann. Rel. & Maint. Symp., 1990, pp. 81–84.Google Scholar
  2. [8.42]
    Benton A.W., Crow L.A., “Integrated reliability-growth testing”, Proc. Ann. Rel. & Maint. Symp., 1990, pp. 160–166.Google Scholar
  3. [8.43]
    Brinkmann R., Modellierung des Zuverlässigkeitswachstums komplexer, reparierbarer Systeme, 1997, Ph. D. Thesis 11903, ETH Zurich.Google Scholar
  4. [8.44]
    Chay S.C., “Reliability growth during a product development program”, Proc. Ann. Rel. & Maint. Symp., 1983, pp. 43–48.Google Scholar
  5. [8.45]
    Crow L.H., “On tracking reliability growth”, Proc. Ann. Rel. & Maint. Symp. (AR & MS), 1975, pp. 438–442; “Methods for assessing rel. growth potential”, AR & MS, 1982, pp. 74–78; “On the initial system rel.”, AR & MS, 1986, pp. 115–119; “Evaluating the rel. of repairable systems”, AR & MS, 1990, pp. 275–279; — and Basu A.P., “Rel. growth estimation with missing data”, AR & MS, 1988, pp. 248–253; “Confidence intervals on the rel. of rep. systems”, AR & MS, 1993, pp. 126–134.Google Scholar
  6. [8.46]
    Duane J.T., “Learning curve appr. to rel. monitoring”, IEEE Trans. Aerosp., (1964)2, pp. 563–566.CrossRefGoogle Scholar
  7. [8.47]
    Fries A., Sen A., “A survey of discrete rel.-growth mod.” IEEE Trans. Rel., 45(1996)4, pp. 582–604.CrossRefGoogle Scholar
  8. [8.48]
    IEC 61014: Programs for Reliability Growth, 1989; 61164: Reliability GrowthStatistical Tests and Estimation Methods, 1995.Google Scholar
  9. [8.49]
    IES, Reliability Growth Processes and Management, 1989.Google Scholar
  10. [8.50]
    Jääskeläinen P., “Rel. growth and Duane learning curves”, IEEE Trans. Rel., 31(1982)2, pp.151–54.CrossRefGoogle Scholar
  11. [8.51]
    Jayachandran T., Moore L.R., “A comparison of reliability growth models”, IEEE Trans. Rel., 25(1976)1, pp. 49–51.MATHCrossRefGoogle Scholar
  12. [8.52]
    Kasouf G. and Weiss D., “An integrated missile reliability growth program”, Proc. Ann. Rel. & Maint. Symp., 1984, pp. 465–470.Google Scholar
  13. [8.53]
    VDI 4009 B1.8: Zuverlässigkeitswachstum bei Systemen, 1985.Google Scholar
  14. [8.54]
    Wong K.L., “A new environmental stress screening theory for electronics”, Proc. Ann. Tech. Meeting IES, 1989, pp. 218–224; “Demonstrating reliability and reliability growth with data from env. stress screening”, Proc. Ann. Rel. & Maint. Symp., 1990, pp. 47–52.Google Scholar
  15. [8.55]
    Yamada S. et al, “Reliability growth models for hardware and software systems based on nonhomogeneous Poisson processes — a survey”, Microel. & Rel., 23(1983), pp. 91–112.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Alessandro Birolini
    • 1
  1. 1.ETH ZurichLuganoSwitzerland

Personalised recommendations