Design Guidelines for Reliability, Maintainability, and Software Quality

  • Alessandro Birolini


Reliability, maintainability, and software quality have to be built into an equipment or system during the design and development phase. This has to be supported by analytical investigations (Chapters 2, 4, and 6) as well as by design guidelines. Adherence to such guidelines limits the influence of those aspects or effects which can invalidate the models assumed for analytical investigations, and contributes greatly to build in reliability, maintainability, and software quality. This chapter gives a comprehensive list of design guidelines for reliability, maintainability, and software quality of equipment and systems, as used in industry.


Software Quality Design Guideline Software Defect Junction Temperature Clock Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


5 Design Rules for Reliability, Maintainability, and Software Quality Design Guidelines for Reliability

  1. [5.1]
    Boxleitner W., Electrostatic Discharge and Electron. Equip., 1989, IEEE Press, Piscataway NJ.Google Scholar
  2. [5.2]
    Catrysse J., “PCB & system design under EMC constraints”, Proc. 11th Int. Zurich EMC Symposium, 1995, pp. 47–58.Google Scholar
  3. [5.3]
    Deutsch A., “Electrical characteristics of interconnections for high-performance systems”, Proc. IEEE, 86(1998)2, pp. 315–355.CrossRefGoogle Scholar
  4. [5.4]
    Gardner J.R., “The appropriateness of plastic encapsulated microcircuits in a specific wooden-round application”, IEEE Trans. Rel., 45(1996)1, pp. 10–17.CrossRefGoogle Scholar
  5. [5.5]
    Goedbloed J.J., Electromagnetic Compatibility, 1992, Prentice Hall, New York.Google Scholar
  6. [5.6]
    Haseloff E., Was nicht im Datenblatt steht, 1992, Appl.-Bericht EB 192, Texas Instruments, Freising; “Entwicklungsrichtlinien für schnelle Logikschaltungen und Systemen”, Proc. ETH/IEEE Conf. on Design Rules for Rel., EMC, Maint., Soft. Qual., 1993, ETH Zurich, Rel.Lab., pp 5.1–5.17.Google Scholar
  7. [5.7]
    Hellström S., ESD-The Scourge of Electronics, 1998, Springer, Berlin.CrossRefGoogle Scholar
  8. [5.8]
    Hirschi W., “EMV gerechte Auslegung elektron. Geräte”, Bull. SEV/VSE, 83(1992)11, pp. 25–29.Google Scholar
  9. [5.9]
    IEEE Special issues on: Design for Reliability of Telecom. Systems, IEEE Trans. ReL, 40(1991)3; Design for Reliability, IEEE Trans. ReL, 44(1995)2.Google Scholar
  10. [5.10]
    IEEE Std 1100–1992: IEEERecom. Practice for Powering and Grounding Sensitive El. Equip. Google Scholar
  11. [5.11]
    Mannone P., “ Careful design methods to prevent CMOS latch-up”, EDN, Jan. 26, 1984, 6 pp.Google Scholar
  12. [5.12]
    IPC, ANSI/IPC-SM-782: Surface Mount Land Patterns (Config. and Design Rules), 1987.Google Scholar
  13. [5.13]
    Ott H.W., Noise Reduction Techniques in Electronic Systems, 1976, Wiley, New York.Google Scholar
  14. [5.14]
    RAC, SOAR-6: ESD Control in the Manuf Envir, 1986; TR-82–172: Thermal Guide for Rel. Eng., 1982; VZAP: ESD Susceptibility Data, 1991.Google Scholar
  15. [5.15]
    Sergent J., Krum Al, Thermal Management Handbook, 1998, McGraw-Hill, New York.Google Scholar
  16. [5.16]
    Solberg V., Design Guidelines for Surface Mount and Fine Pitch Technolgy, 1996, McGraw-Hill, New York.Google Scholar
  17. [5.17]
    Vinson J.E., Liou J., “Electrostatic disch. in semicond dev”, Proc. IEEE, 86(1998)2, pp.399–418.CrossRefGoogle Scholar
  18. [5.18]
    White D.R.J., EMI Control in the Design of Printed Circuit Boards and Backplanes, 1982, Interf. Control Tech., Gainesville VI.Google Scholar
  19. [1.17]
    MIL-HDBK-338: Electronic Reliability Design Handbook, Vol. I Ed. A 1988, Vol. II 1984.Google Scholar
  20. [1.21]
    RAC/RL, Reliability Toolkit: Commercial Practices Edition, 1995, RAC, Rome NY.Google Scholar
  21. [A2.10]
    NASA NHB 5300.4 (1A): Rel. Progr. Prov. for Areo. & Space System Contractors, 1970; (1B): Quality Progr. Prov. for Aero. & Space Syst. Contr., 1969; (2B): Quality Assurance Provisions for Government Agen. 1971; (1D-1): Safety, Rel., Maint., & Quality Prov. for Shuttle Progr, 1974.Google Scholar
  22. [A2.11]
    VDI: 4002, 4003, 4004, 4005, 4007 Bl, 4008, 5–9, 4009, 4010, 1981–86.Google Scholar
  23. [3.1]
    Barber M.R., “Fundamental timing problems in testing MOS VLSI on modern ATE”, IEEE Design &Test, (1984)8, pp. 90–97.CrossRefGoogle Scholar
  24. [3.2]
    Birolini A., “Mögl. und Grenzen der Qualifikation, Prüfung und Vorbehandlung von ICs”, QZ, 27(1982)11, pp. 321–326; “Prüfung und Vorbehandlung von Bauelem. und bestück. Leiterplatten”, VDI/VDE Fachtagung, Karlsruhe 1984, VDI Bericht Nr. 519, pp. 49–61; “Neue Ergebnisse aus der Qualif. grosser Halbleiterspeicher”, me, 7(1993) 2, pp. 98–102;Google Scholar
  25. [3.2a]
    Büchel W., Heavner D., “Test and screening strategies for large memories”, 1st European Test Conf, Paris: 1989, pp. 276–283.Google Scholar
  26. [3.3]
    Brambilla P., Canali C., Fantini F., Magistrali F., Mattana G., “Rel. evaluation of plastic-packaged device for long life applications by THB test”, Microel. & Rel, 26(1986)2, pp. 365–384.CrossRefGoogle Scholar
  27. [3.4]
    Crook D.L., “Evolution in VLSI reliability engineering”, Int. Rel Phys. Symp., 1990, pp. 2–11.Google Scholar
  28. [3.5]
    CECC 00107: Quality Assessment Procedures — part I to III, 1979–1982 (see also 00100 to 00106, 00108, 00109, and 00111 to 00113); 00200: Qualified Product List. Google Scholar
  29. [3.6]
    ESA PSS 01–603: ESA Preferred parts List, 3rd Ed. 1995.Google Scholar
  30. [3.7]
    ETH Zurich Reliability Lab., Reports Q2-Q12: Qualification Test for DRAMs 256K×1, SRAMS 32K×8, EPROMs 32K×8, SRAMs 8K×8, DRAMs 1M×1, EEPROMs 8K×8, SRAMs 128K×8, DRAMs 4M×1, EEPROMs 32K×8, EPROMs 64K×16, and FLASH-EPROMs 128K×8. 1989–92.Google Scholar
  31. [3.8]
    Gerling W., “Modem reliability assurance of integr. circuits”. Proc. ESREF’90, Bari, pp. 1–12.Google Scholar
  32. [3.9]
    IEC 60068: Environmental Testing (Parts 1–5), 1969–97; 60721: Classification of Environmental Conditions (Parts 1–3), 1982–97; 60749: Semicon. Devices: Mech. and Climatic Test Methods, 1996. 61000: Electromagnetic Compatibility (EMC), (Parts 1–6), 1990–98.Google Scholar
  33. [3.10]
    IEEE, Special issues on: Reliability of Semiconductor Devices, Proc. IEEE, 62(1974)2; Micron and Submicron Circuit Engineering, Proc. IEEE, 71(1983)5; Integrated circuit technologies of the future, Proc. IEEE, 74(1986)12; VLSI Reliability, Proc. IEEE, 81(1993)5.Google Scholar
  34. [3.11]
    MIL-STD-883: Test Methods and Procedures for Microelectronics, Ed. D 1991; see also -199, -202, -750, -810, -976, -13 8535, -M 38510, -S 19500.Google Scholar
  35. [3.12]
    Ousten Y., Danto Y., Xiong N., Birolini A., “Rel. eval. and failure diagnostic of Ta-cap. using freq. anal. and design of exp”, Proc.Int. Symp.for Testing & Failure Analysis, 1992, pp. 189–196.Google Scholar
  36. [3.13]
    Powell R.F., Testing Active and Passive Electronic Components, 1987, Dekker, New York.Google Scholar
  37. [3.14]
    RAC, PSAC: Parts Selection, Appl. and Control, 1993; CAP: Reliable Appl. of Components, 1993; PEM2: Reliable Appl. of Microcircuits, 1996; HYB: Reliable Appl. of Hybryds, 1993; MCM: Reliable Appl. of Multichip Modules, 1995. Google Scholar
  38. [3.15]
    Ratchev D., “Are NV-Mem. non-volatile?” Proc. 1993 IEEE Workshop on Memory Test, pp.102–06.Google Scholar
  39. [3.16]
    Sawada K. and Kagano S., “An evaluation of Iddq versus conventional testing for CMOS sea-of-gate ICs”, Int. Test Confi, 1992, pp. 158–167.Google Scholar
  40. [3.17]
    Thomas R.W., “The US Department of Defense procurement strategy and the semiconductor industry in the 1990’s”, Proc. 4th Int. Conf. Quality in El. Comp., Bordeaux 1989, pp. 1–3.Google Scholar
  41. [3.18]
    van de Goor A.J., Testing Semiconductor Memories, 1991, Wiley, New York.Google Scholar
  42. [3.19]
    Williams T.W. (Ed.), VLSI — Testing, 1986, North-Holland, Amsterdam.Google Scholar
  43. [3.20]
    Wolfgang E., Görlich S., Kölzer J., “Electron beam testing”, Proc. ESREF’90, Bari, pp.111–120.Google Scholar
  44. [3.21]
    Zerbst M. (Ed), Mefi- und Prüftechnik, 1986, Springer, Berlin.Google Scholar
  45. [3.22]
    Zinke O., Seither H., Widerstände, Kondensatoren Spulen u. ihre Werkstoffe, 1982, Springer, Berlin.Google Scholar

Failure Mechansims, Failure Analysis

  1. [3.31]
    Amerasekera E., Campbell D., Failure Mechanisms in Semiconductor Devices. 1987, Wiley, NY.Google Scholar
  2. [3.32]
    Barbottin G., Vapaille A., (Eds.), Instabilities in Silicon Dev, 1986, North-Holland, Amsterdam.Google Scholar
  3. [3.33]
    Brox M., Weber W., “Dynamic degradation in MOSFETs — Part 1: The physical effects”, IEEE Trans. El. Dev., 38(1991)8, pp. 1852–1858.CrossRefGoogle Scholar
  4. [3.34]
    Chen P., et al, “A unified compact scalable ΔId model for hot carrier reliability simulation”, Proc. Int. Rel. Phys. Symp., 1999, pp. 243–248.Google Scholar
  5. [3.35]
    Ciappa M., Ausfallmech. integrierter Schaltungen, 1991, Reports F1 and F4, ETH Zurich, Rel. Lab.Google Scholar
  6. [3.36]
    De Salvo B., et al, “A new physical model for NVM data-retention time to failure”, Proc. Int. Rel. Phys. Symp., 1999, pp. 19–23.Google Scholar
  7. [3.37]
    Degraeve R., et al, “On the field depend, of intrinsic and extrinsic time-dep. dielectric breakdown”, Proc. Int. Rel. Phys. Symp., 1996, pp. 44–54.Google Scholar
  8. [3.38]
    Fantini F., “Reliability and failure physics of integrated circuits”, in Dinemite II, (Vol. IV), Leuven, B: Interuniversitair Micro-Elektronica Centrum, 1986, pp. 1–30.Google Scholar
  9. [3.39]
    Fiegna C., Venturi F., Melanotte M., Sangiorgi E., Riccö B., “Simple and efficient modeling of EPROM writing”, IEEE Trans. El. Dev., 38(1991)3, pp. 603–610.CrossRefGoogle Scholar
  10. [3.40]
    Fung R.C.-Y., Moll J.L., “Latch-up model for the parasitic p-n-p-n path in bulk CMOS”, IEEE Trans. El. Devices, 31(1984)1, pp. 113–120.CrossRefGoogle Scholar
  11. [3.41]
    Ghidini G. et al, “Charge trapping mechanism under dynamic stress and their effect on failure time”, Proc. Int. Rel. Phys. Symp., 1999, pp. 88–92.Google Scholar
  12. [3.42]
    Glasstone S., Laidler K.J., Eyring H.E., The Theory of Rate Processes, 1941, McGraw-Hill, N.Y.Google Scholar
  13. [3.43]
    Herrmann M., Charge Loss Modeling of EPROMs with ONO Interpoly Dielectric, 1994, Ph.D. Thesis 10817, ETH ZurichGoogle Scholar
  14. [3.43a]
    and Schenk A., “Field and high-temperature dependance of the longterm charge loss in EPROMs”, J. Appl. Phys., 11 (1995)9, pp. 4522–4540.Google Scholar
  15. [3.44]
    Howes M.J., Morgan D.V. (Eds.), Reliability and Degradation — Semiconductor Devices and Circuits, 1981, Wiley, New York.Google Scholar
  16. [3.45]
    Hu C. (Ed.), Nonvolatile Semiconductor Memories: Technologies, Design, and Applications. 1991, IEEE Press, Piscataway NJ.Google Scholar
  17. [3.46]
    Hu C., Lu Q., “A unified gate oxide reliability model”, Proc. Int. Rel. Phys. Symp., 1999, pp. 47–51.Google Scholar
  18. [3.47]
    Kolesar S.C., “Principles of corrosion”, Proc. Int. Rel. Phys. Symp., 1974, pp. 155–167.Google Scholar
  19. [3.48]
    Lall P., “Temperature as input to microelectronics-rel. models”, IEEE Trans. Rel, 45(1996)1, pp.3–9.CrossRefGoogle Scholar
  20. [3.49]
    Lantz L., “Soft errors induced by a — particles”, IEEE Trans. Rel, 45 (1996)2, pp. 174–179.CrossRefGoogle Scholar
  21. [3.50]
    Lee J.H., et al, “Using erase self-detrapped effect to eliminate the flash cell program/erase cycling Vth window close”, Proc. Int. Rel. Phys. Symp., 1999, pp. 24–29.Google Scholar
  22. [3.51]
    Li E. et al, “Hot carrier effects in nMOSFETs in 0.1μmm CMOS technology”, Proc. Int. Rel. Phys. Symp., 1999, pp. 253–258.Google Scholar
  23. [3.52]
    Mann J.E., “Failure analysis of passive devices”, Proc. Int. Rel. Phys. Symp., 1978, pp. 89–92.Google Scholar
  24. [3.53]
    Menzel E., Kubalek E., “Fundamentals of electron beam testing of integrated circuits”, Scanning, (1983)5, pp. 136–142.Google Scholar
  25. [3.54]
    Pecht M.G., Radjojcic R., Guidebook for Managing Silicon Chip Reliability, 1999, CRC Press, Boca Raton FL.Google Scholar
  26. [3.55]
    Peck D.S., “Comprehensive model for humidity testing correlation”, Proc. Int. Rel. Phys. Symp., 1986, pp. 44–50; — and Thorpe W.R., “Highly accelerated stress (THB) — Test history, some problems and solutions”, Tutorial Notes at the Int. Rel. Phys. Symp., 1990, pp. 4.1–4.27.Google Scholar
  27. [3.56]
    Quader K.N., Fang P., Yue J., Ko P.K., Hu C., “Simulation of CMOS circuit degradation due to hot-carrier effects”, Proc. Int. Rel. Phys. Symp., 1992, pp. 16–23.Google Scholar
  28. [3.57]
    RAC, FMD: Failure Mode/Mechanism Distribution, 1991Google Scholar
  29. [3.57a]
    MFAT-1: Microelectronic Failure Analysis Techn. -a Procedual Guide, 1981Google Scholar
  30. [3.57b]
    MFAT-2: GaAs Microcircuit Charact. & Failure Analysis Techn, 1988.Google Scholar
  31. [3.58]
    Reiner J., “Latent Gate Oxide Defects Caused by CDM-ESD”, Proc. EOS/ESD Symp, Phoenix AZ, 1995, pp. 6.5.1–11, also in Jour, of Electrostatic, 38(1996) pp. 131–157CrossRefGoogle Scholar
  32. [3.58a]
    Reiner J., Latent Gate Oxide Damage Induced by Ultrafast Electrostatic Discharge, 1995, Ph.D. Thesis 11212, ETH Zurich.Google Scholar
  33. [3.59]
    Schuegraf K.F., Hu C, “Reliability of thin SKV, Semicond. Sei. Technoi, 9(1994), pp. 989–1004.CrossRefGoogle Scholar
  34. [3.60]
    Srinivasan G.R., “Modeling the cosmic-ray-induced soft errors in IC’s: An overview”, IBM J. of R&D, 40 (1996)1, pp. 77–90.CrossRefGoogle Scholar
  35. [3.61]
    Troutmann R.R., “Latch-up in CMOS technoi.”, IEEE Circuits andDev. Mag., (1987)5, pp.15–21.CrossRefGoogle Scholar
  36. [3.62]
    Wang C.T. (Ed.), Hot Carrier Design Considerations for MOS Devices and Circuits, 1992, Van Nostrand Reinhold, New York.Google Scholar
  37. [3.63]
    Weber W. et al, “Dynamic degradation in MOSFETs-Part2: Application in the circuit environment”, IEEE Trans. El. Dev., 38(1991)8, pp. 1859–1867.CrossRefGoogle Scholar
  38. [3.64]
    Wong K.L., “The common thread for operational reliability and failure physics”, Microel. & Rel, 22(1982)2, pp. 177–186; —, Kallis J.M., Burkhard A.H., “Culprits causing avionic equipment failures”, Proc. Ann. Rel. & Maint. Symp., 1987, pp. 416–421.CrossRefGoogle Scholar
  39. [3.65]
    Wu W., Held M., Umbricht N., Birolini A., “dv/dt induced latching failures in 1200V/400A halfbridge IGBT modules”, Int. Rel. Phys. Symp., 1994, pp.Google Scholar

Microconnections and Packaging

  1. [3.71]
    ASM, Packaging, Vol.1, 1989, ASM Int., Material park OH.Google Scholar
  2. [3.72]
    Barker D.B., Dasgupta A., Pecht M., “Printed-wiring-board solder-joint fatigue-life calculation under thermal and vibration loading”, Proc. Ann. Rel. & Maint. Symp., 1991, pp. 451–459.Google Scholar
  3. [3.73]
    Ciappa M., Malberti P., “Reliability of laser-diode modules in temperature-uncontrolled env.”, Int. Rel. Phy. Symp., 1994, pp. 466–469; — and Scacco P., “Selective back-etch for silicon devices.”, Proc. ISTFAV5, Santa Clara CA, 1995, pp. 257–261.Google Scholar
  4. [3.74]
    Darveause R. and Banerji K., “Constitutive relations for tin-based solder joints.”, IEEE Trans. Compon., Pack., and Manuf. Technoi, 15 (1992) 6, pp.1013–1024.Google Scholar
  5. [3.75]
    Engelmaier, W., “Enviromental stress screening and use enviroments — their impact on solder joint and plated-through-hole reliability”, Proc. Int. Electronics Packaging Conf, Marlborough MA, 1990, pp. 388 – 393Google Scholar
  6. [3.75a]
    and Attarwala A.I., “Surface-mount attachment boards”, IEEE Trans., Compon., Pack., andManuf. technol., 12(1989)2, pp. 284–289.Google Scholar
  7. [3.76]
    ETH Zurich, Rel. Lab., Reports P3-PI6 and PI8: Qualification Tests on 7 Telecom. Equip., 1989–91.Google Scholar
  8. [3.77]
    Fenech A., Hijagi A., Danto Y., “Determination of thermomechanical behaviour of microel. packaging based on mictostructural analysis”, Proc. ESREF” 94, Glasgow, 1994, pp. 405 – 410.Google Scholar
  9. [3.78]
    Frear D.R.(Ed.), The Mechanics of Solder Alloy Interconnections, 1994, Van Nostrand Reinhold, N. Y.Google Scholar
  10. [3.79]
    Grossmann G., Zuverlässigkeit von Weichlotstellen, 1993, Report L29, ETH Zurich, Rel. Lab.Google Scholar
  11. [3.79a]
    Grossmann G., Produktion und Prüfung von Testprints der SMT Fine Pitch, 1996, Rep.K12, ETH Zurich, Rel.Lab.Google Scholar
  12. [3.79b]
    Grossmann G., “Metallurgical consid. for acc. testing of el. equip.”, IEEE Trans. Comp., Pack. & Manuf. Technol., 20(1997)2, pp. 213–218CrossRefGoogle Scholar
  13. [3.79c]
    Grossmann G., “The deformation of Sn62Pb36Ag2 and its impl. on the design of acc. tests for solder joints”, IEEE Trans. Comp., Pack.& Manuf. Technol., 22(1999)1, pp. 71–79; — et al, “Properties of thin layers of Sn62Pb36Ag2”, Proc. 1995 IEMT Symp., pp. 502–507; “Metallurgical consid. for accel. testing of el. equip.”, Proc. 1996 IEMT Symp., pp. 298–304; “Lifetime ass. of soft sold. joints on the base of the behav. of Sn62Pb36Ag2”, Proc. 1997 IEMT Symp., pp.256–263.MathSciNetGoogle Scholar
  14. [3.80]
    Heiduschke K., “The logarithmic strain space description”, Int. J. Solids Structures, 32 (1995), pp. 1047–1062 and 33(1996) pp. 747–760CrossRefMATHGoogle Scholar
  15. [3.80a]
    Heiduschke K. Kontinuumsmech. und Finite Element Modellierung (Software package URMEL), 1996, Report Kll, ETH Zurich, Rel. Lab.Google Scholar
  16. [3.80b]
    and Grossmann G., “Modeling fatigue cracks with spatial shape”, Proc. EuPac ′94, Essen 1994, pp. 16–23.Google Scholar
  17. [3.81]
    IEEE, Special issue on: Plastic Encapsulated Microcircuits, IEEE Trans. Rel., 42(1993)4.Google Scholar
  18. [3.82]
    Jacob P., Held M., Scacco P., “Reliability Testing and Analysis of IGBT Power Semiconductor Modules “, Proc. ISTFA’94, Los Angeles CA 1994, pp. 319 – 325.Google Scholar
  19. [3.83]
    Lau J., Harkins G., Rice D., Kral J., “Thermal fatigue reliability of SMT packages and interconnections”, Proc. Int. Rel. Phys. Symp., 1987, pp. 250–259.Google Scholar
  20. [3.84]
    Lin R., Blackshear E, Serisky P., “Moisture induced cracking in plastic encapsulated SMD during solder reflow process”, Proc. Int. Rel. Phys. Symp., 1988, pp. 83–89.Google Scholar
  21. [3.85]
    Pecht M., “A model for moisture induced corrosion failures in microelectronic packages”, IEEE Trans. Comp., Pack., and Manuf. Technoi, 13(1990)2, pp. 383–389Google Scholar
  22. [3.85a]
    Pecht M., (Ed.) Handbook of Electronic Package Design, 1991, Dekker, New YorkGoogle Scholar
  23. [3.85a]
    and Ramappan V., “Are components still the major problem: a review of electronic system and device field failure reurns”, IEEE Trans. Comp., Pack., and Manuf. Technoi, 15(1992)6, pp. 1160–1164.Google Scholar
  24. [3.86]
    Philofsky E., “Design limits when using Au-Al bonds”, Proc. Int. Rel. Phys. Symp., 1986, pp.114–19.Google Scholar
  25. [3.87]
    Solomon H.D. et al. (Ed.), Low Cycle Fatigue, 1988, ASTM, Philadelphia.Google Scholar
  26. [3.88]
    Weber L., Material- & Schädigungsmodell bei Pb-Zn-Ag-Lot, 1996, Rep.KlO, ETH Zurich,Rel. Lab.Google Scholar
  27. [3.88a]
    Weber L., Creep-fatigue behaviour ofeutectic Sn62Pb36Ag2 solder, 1997, Ph.D.Thesis 12251, ETH Zurich.Google Scholar
  28. [8.1]
    Desplas E.P., “Rel. in the manufacturing cycle”, Proc. Ann. Rel. & Maint. Symp., 1986, pp. 139–144.Google Scholar
  29. [8.2]
    DGQ 16–31/-32/-33: SPC 1/2/3 Statistische Prozesslenkung, 1990.Google Scholar
  30. [8.3]
    Ellis B.N., Cleaning and Contamination of Electronics Components and Assemblies, 1986, Electrochemical Publ., Ayr (Scotland).Google Scholar
  31. [8.4]
    Hnatek E. R., Integrated Circuit Quality and Reliability, 2nd Ed. 1999, Dekker, New York.Google Scholar
  32. [8.5]
    Grossmann G., “Contamination of various flux-cleaning combinations on SMT assemblies, Soldering & SMT, 22 (1996) Feb., pp. 16–21.Google Scholar
  33. [8.6]
    Lau J.H. et al, “Experimental & statistical analysis of surface-mount technology PLCC solder-joint reliability”, IEEE Trans. Rel., 37(1988)5, pp. 524–530.CrossRefGoogle Scholar
  34. [8.7]
    Lea C., A Scientific Guide to SMT, 1988, Electrochemical Publ., Ayr (Scotland).Google Scholar
  35. [8.8]
    Lenz E., Automatisiertes Löten elektronischer Baugruppen, 1985, Siemens, Munich.Google Scholar
  36. [8.9]
    Pawling J.F. (Ed.), Surface Mounted Assemblies, 1987, Electrochemical Publ., Ayr (Scotland).Google Scholar
  37. [8.10]
    Prasad R.P., Surface Mount Technology, 1989, Van Nostrand Reinhold, New York.Google Scholar
  38. [8.11]
    Shewhart W.A., “Quality control charts”, Bell Tech. Jurn., 5(1926) pp. 593–603.Google Scholar
  39. [8.12]
    Scraft R., Bleicher M. (Eds.), Oberflächenmontage elektron. Bauelemente, 1987, Hütig, Heidelberg.Google Scholar
  40. [8.13]
    Vardaman J. (Ed.), Surface Mount Technology: Recent Jap. Dev, 1993, IEEE Press, Piscataway NJ.Google Scholar
  41. [8.14]
    Wassink R.J.K., Soldering in Electronic, 2nd Ed. 1989, Electrochemical Publ., Ayr (Scotland).Google Scholar

Design Guidelines for Maintainabilty

  1. [5.21]
    Abramovici M., Breuer M.A., Friedman A.D., Digital System Testing and Testable Design, 1990, Comp. Scient. Press, New York.Google Scholar
  2. [5.22]
    Bennetts R.G., Design of Testable Logic Circuits, 1984, Addison-Wesley, London.Google Scholar
  3. [5.23]
    DoD, AMCP-706–132: Engineering Design Handbook — Maintenance Engineering Tech., 1975;-133: Engineering Design Handbook — Maintainability Eng. Theory and Practice, 1975.Google Scholar
  4. [5.24]
    Lala P.K., Fault Tolerant and Fault Testable Hardware Design, 1985, Prentice-Hall, Engl. Cliffs NJ.Google Scholar
  5. [5.25]
    Maunder C., The Board Designer’s Guide to Testable Logic Circuits, 1992, Addison-Wesley, Reading MAGoogle Scholar
  6. [5.25a]
    Maunder C.,A universal framework for managed Built-in Test, Proc. Int. Test Conf., Paris 1995, 8 pp.Google Scholar
  7. [5.26]
    Richards D.W., Klion J., “Smart BIT — an approach to better system-level built-in test”, Proc. Ann. Rel. & Maint. Symp., 1987, pp. 31–34.Google Scholar
  8. [5.27]
    Robinson G., Deshayes J., “Interconnect testing of boards with partial boundary-scan”, Proc. Int. Test Conf., 1990, paper 27.3.Google Scholar
  9. [5.28]
    Smith D.J. and Babb A.H., Maintainability Engineering, 1973, Pitman, London.Google Scholar
  10. [4.3]
    Blanchard B.S., Lawery E.E., Maintainability, Principles and Practices, 1969, McGraw-Hill, N.Y.Google Scholar

Software Quality

  1. [5.31]
    ACM Special issues on: Software Testing, Commun, of the ACM, 31(1988)6Google Scholar
  2. [5.31a]
    Software Quality, Commun, of the ACM, 36(1993)11.Google Scholar
  3. [5.32]
    Adrion R.W., Branstad M.A., Cherniavsky J.C., “Validation, verification, and testing of computer software”, ACM Computing Surveys, 14(1982)2, pp. 159–192.CrossRefGoogle Scholar
  4. [5.33]
    Arlat J., Karama K., Laprie J.C., “Dependability modeling and evaluation of software fault-tolerant systems”, IEEE Trans. Comp., 39(1990)4, pp. 504–513.CrossRefGoogle Scholar
  5. [5.34]
    Bergland G.D., “A guided tour of program design methodologies”, Computer, 14(1990)10, pp.13–37.CrossRefGoogle Scholar
  6. [5.35]
    Boehm B.W., “Verifying and validating software requirements and design specifications”, Software, 1(1984)1, pp. 75–88CrossRefGoogle Scholar
  7. [5.35]
    Boehm B.W., “Improving software productivity”, Computer, 20(1987) 9, pp. 43–57CrossRefGoogle Scholar
  8. [5.35]
    Boehm B.W., Spiral model of software development and enhancement, Computer, 21 (1988)5, pp. 61–72.CrossRefGoogle Scholar
  9. [5.36]
    Brocklehurst S., Chan P.Y., Littlewood B., Snell J., “Recalibrating software reliability models”, IEEE Trans. Soft. Eng., 16(1990)4, pp. 458–469.CrossRefGoogle Scholar
  10. [5.37]
    BWB, Software-Entwicklungsstandard der BWB — Vorgehensmodell, 1991.Google Scholar
  11. [5.38]
    ESA PSS-05–04: Guide to the Software Architect, 1992; -05: Detailed Design and Prod, 1992; -08: Project Management, 1994; -09: Configuration Manag., 1992; -11: Quality Assurance, 1993.Google Scholar
  12. [5.39]
    Fenton N., Littlewood B., Software Reliability and Metries, 1991, Elsevier, London.Google Scholar
  13. [5.40]
    Gomaa H., “A software design meth. for real-time systems”, Comm. ACM, 27(1984)9, pp. 938–949.CrossRefGoogle Scholar
  14. [5.41]
    Grady R., “Practical res. from measur. soft, quality”, Commun, of the ACM, 36(1993)11, pp.62–68.CrossRefGoogle Scholar
  15. [5.42]
    Hansen M.D., “Survey of available software-safety analysis techniques”, Proc. Ann. Rel. & Maint. Symp., 1989, pp. 46–49.Google Scholar
  16. [5.43]
    Herrmann D.S., Peercy D.E., “The bridge between hardware, software, and system safety and reliability”, Proc. Ann. Rel. & Maint. Symp., 1999, pp. 396–402.Google Scholar
  17. [5.44]
    IEC, 60300–3–6: Depend. Manag. — Software Aspects of Dependability, 1997.Google Scholar
  18. [5.45]
    IEEE Special issues on: Software quality assurance, Computer, 12(1979)8; Fault Tolerant computing, Computer, 17(1984)8; Rapid prototyping, Computer, 22(1989)5; Verification and validation, Software, May 1988; Software Reliability, IEEE Trans. Rel., 28(1979)3; Software eng. project manag., IEEE Trans. Soft. Eng., 10(1984)1; Experimental computer science, IEEE Trans. Soft. Eng., 16(1990) 2; Software Quality, IEEE Software, Jan. 1996.Google Scholar
  19. [5.46]
    IEEE Software Eng. Std.: Vol. 1 to Vol. 4, 1999, see [A2.7].Google Scholar
  20. [5.47]
    Kline M.B., “Software and Hardware R&M — what are the differences?”, Proc. Ann. Rel. & Maint. Symp., 1980, pp. 179–184.Google Scholar
  21. [5.48]
    Leveson N.G. “Software safety in computer-controlled systems”, Computer, (1984)2, pp. 48–55CrossRefGoogle Scholar
  22. [5.48a]
    Leveson N.G. “Software safety: why, what, and how”, ACM Computing Surveys, 18(1986)2, pp. 125–163.CrossRefGoogle Scholar
  23. [5.49]
    Littlewood B., Strigini L., “The risk of software”. Scient. Amer., 1992, pp. 38–43; “Validation of ultrahigh dependability for software-based syst”, Commun. of the ACM, 36(1993)11, pp. 69–80.CrossRefGoogle Scholar
  24. [5.50]
    Littlewood B., “Evaluation of software reliability — achievements and limitations”, Proc. ETH/IEEE Int. Symp. on Rel. Eng. 2V00, ETH Zurich, Rel. Lab., Oct. 17, 1996, 22 pp.Google Scholar
  25. [5.51]
    Musa J.D., Iannino A., Okumoto K., Software Reliability: Measurement, Prediction, Application, 1987, McGraw-Hill, New York.Google Scholar
  26. [5.52]
    Parnas D.L., van Schouwen A.J., Kwan S.P., “Evaluation of safety-critical software”, Commun, of the ACM, 33(1990)6, pp. 636–648.CrossRefGoogle Scholar
  27. [5.53]
    Pflegger S.L., “Measuring software reliability”, IEEE Spectrum, Aug. 1992, pp. 56–60Google Scholar
  28. [5.54]
    Reifer D.J., “Software Failure Modes and Effects Anal.”, IEEE Trans. Rel, 28(1979)3, pp.247–49.CrossRefGoogle Scholar
  29. [5.55]
    SAQ, 10300: Software Qualitätssich. und CASE, 1995; 10301: HDBK Beschaffung von Soft, 1996; 10302: HDBK für Audits im Soft.-Bereich, 1996; 10303: Grundl. zum Umgang mit Soft.-Probl., 1997.Google Scholar
  30. [5.56]
    Singpurwalla N.D., “The failure rate of software: does it exist?”, IEEE Trans. Rel., 44(1995)3, pp. 463–469.CrossRefGoogle Scholar
  31. [5.57]
    Stankovic J.A., “A serious problem for next-generation system”, Computer, 21(1988)10, pp.10–19.CrossRefGoogle Scholar
  32. [5.58]
    Wallace D. et al, “An analysis of selected software safety Std.”, IEEE AES Mag., 1992, pp. 3–14.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Alessandro Birolini
    • 1
  1. 1.ETH ZurichLuganoSwitzerland

Personalised recommendations