Skip to main content

Basic Stochastic Process Theory

  • Chapter
Reliability Engineering
  • 452 Accesses

Abstract

Stochastic processes are powerful tools for the investigation of the reliability and availability of repairable equipment and systems. They can be considered as families of time-dependent random variables or as random functions in time, and thus have a theoretical foundation based on probability theory (Appendix A6). The use of stochastic processes allows the analysis of the influence of the failure-free operating and repair time distributions of elements, as well as of the system’s structure, repair strategy, and logistical support, on the reliability and availability of a given system. Considering the applications given in Chapter 6, and for reasons of mathematical tractability, this appendix mainly deals with regenerative stochastic processes with a finite state space, to which belong renewal processes, Markov processes, semi-Markov processes, and semi-regenerative processes. The theoretical presentation will be supported by examples taken from practical applications. This appendix is a compendium of the theory of stochastic processes, consistent from a mathematical point of view but still with engineering applications in mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

A7 Stochastic Processes

  1. Asmussen S., Applied Probability and Queues, 1986, Wiley, Chicherster.

    Google Scholar 

  2. Birolini A., “Some appl. of regen. stoch. proc. to rel. theory — Part one and two”, IEEE Trans. Rel, 23 (1974) 3, pp. 186–194 and 24(1975)5, pp. 336–340; Semi-Markoff und verwandte Prozesse: Erzeugung und Anwendungen auf Probleme der Zuverlässigkeits- und Übertragungsth, 1974, Ph.D. Thesis 5375, ETH Zurich, also in AGEN-Mitt., 18(1975), pp. 3–52; “Hardware simulation of semi-Markov and related proc, Math. & Comp. in Simul., 19(1977), pp. 75–97 and 183–191; On the Use of Stoch. Proc. in Modeling Rel. Problems, 1985, Springer, Berlin (Lect. Notes Ec. & Math. Systems Nr. 252); Quality and Reliability of Technical Systems, 2nd Ed. 1997, Springer, Berlin; Zuverlässigkeit von Geräten und Systemen, 4th Ed. 1997, Springer, Berlin.

    Article  MathSciNet  Google Scholar 

  3. Cinlar E., Introduction to Stochastic Processes, 1975, Prentice Hall, Englewood Cliffs NJ.

    MATH  Google Scholar 

  4. Cox D.R., “The analysis of non-markovian stoch. proc. by the inclusion of sup. variables”, Proc. Cambridge Phil Soc, 51(1955), pp. 433–441; Renewal Theory, 1962, Methuen, London.

    Article  MATH  Google Scholar 

  5. Cox D.R., Lewis P.A., The Stat. Analysis of Series of Events, 2nd Ed. 1968, Methuen, London.

    Google Scholar 

  6. Cramér H., “Model building with the aid of stoch. proc.”, Technometrics, 6 (1964), pp. 133–159.

    Article  MathSciNet  MATH  Google Scholar 

  7. Cramér H., Leadbetter M.R., Stationary and Related Stochastic Processes, 1967, Wiley, New York.

    MATH  Google Scholar 

  8. Doob I.L., Stochastic Processes, 7th Ed. 1967, Wiley, New York.

    Google Scholar 

  9. Feller W., “On the integral equation of renewal theory”, Ann. Math. Statistics, 12(1941), pp.243–67; “On semi-Markov-processes”, Proc. Nat. Acad. Scient. (USA), 51(1964), pp. 653–659; An Introduction to Prob. Theory and its Applic, Vol 13th Ed. 1968, Vol II 2nd Ed. 1966, Wiley, N.Y.

    Article  MathSciNet  Google Scholar 

  10. Franken P., Streller A., “Reliability analysis of complex repairable systems by means of marked point processes”, J. Appl. Prob., 17(1980), pp. 154–167; — and Kirsten B.M., “Reliability analysis of complex systems with repair”, EIK, 20(1984), pp. 407–422.

    Article  MathSciNet  MATH  Google Scholar 

  11. Franken P. et al, Queues and Point Processes, 1981, Akademie, Berlin.

    Google Scholar 

  12. Gnedenko B.W., König D. (Ed.), Handbuch der Bedienungstheorie, Vol.1 & II1983, Akad., Berlin.

    MATH  Google Scholar 

  13. Gnedenko B.W., Kovalenko I.N., Introduction to Quening Theory, 1989, Birkhäuser, Basel.

    Book  Google Scholar 

  14. Grigelionis B.I., “Limit theorems for sums of repair processes”, Cybernetics in the Serv. of Comm., 2(1964), pp. 316–341.

    Google Scholar 

  15. Hunter J.J., Mathematical Techniques of Applied Probability, Vol. 2, Discrete Time Models, 1983, Academic Press, New York.

    Google Scholar 

  16. Karlin S., McGregor J.L., “The differential equations of birth and death processes, and the Stieltjes moment problem”, Trans. Amer. Math. Soc, 86(1957), pp. 489–546;

    Article  MathSciNet  Google Scholar 

  17. Karlin S., McGregor J.L., “The classification of birth and death processes”, Trans. Amer. Math. Soc, 85(1957), pp. 366–400;

    Article  Google Scholar 

  18. Karlin S., McGregor J.L.,“Coincidence properties of birth and death processes”, Pacific J. Math., 9(1959), pp. 1109–1140.

    Article  MathSciNet  MATH  Google Scholar 

  19. Khintchine A.Y., Mathematical Methods in the Theory of Queuing, 1960, Griffin, London.

    Google Scholar 

  20. Lévy P., “Processus semi-markoviens”, Proc. Int. Congr. Math. Amsterdam, 3(1954), pp. 416–26.

    Google Scholar 

  21. Neuts M.F., Matrix-geometric Solutions in Stochastic Models: an Algorithmic Approach, 1981, Hopkins Univ. Press, Baltimore MA.

    MATH  Google Scholar 

  22. Osaki S. and Hatoyama Y. (Eds.), Stochastic Models in Reliability Theory, 1984, Springer, Berlin (Lect. Notes in Ec. and Math. Syst. Nr. 235).

    MATH  Google Scholar 

  23. Parzen E., Stochastic Processes, 3rd Printing 1967, Holden-Day, San Francisco.

    Google Scholar 

  24. Pavlov I.V., “The asymptotic distribution of the time until a semi-Markov process gets out of a kernel”, Eng. Cybernetics, (1978)5, pp. 68–72.

    Google Scholar 

  25. Pyke R., “Markov renewal processes: definitions and preliminary properties”, Annals Math. Statistics, 32(1961), pp. 1231–1242;

    Article  MathSciNet  MATH  Google Scholar 

  26. Pyke R., “Markov renewal proc. with finitely many states”, Annals Math. Stat., 32(1961), pp.1243–1259

    Article  MathSciNet  MATH  Google Scholar 

  27. Pyke R.,#x2014; and Schaufele R., “Limit theorems for Markov renewal proc”, Annals Math. Stat., 35(1964), pp. 1746–1764; “The existence and uniqueness of stationary measures for Markov renewal proc.”, Annals Math. Stat., 37(1966), pp. 1439–1462.

    Article  MathSciNet  MATH  Google Scholar 

  28. Smith W.L., “Asymptotic renewal theorems”, Proc. Roy. Soc. Edinbourgh, 64(1954), pp. 9–48; “Regenerative stochastic processes, Proc. Int. Congress Math. Amsterdam, 3(1954), pp. 304–305; “Regenerative stochastic processes”, Proc. Roy. Soc. London, Ser. A, 232(1955), pp. 6–31; “Remarks on the paper: Regenerative stochastic processes”, Proc. Roy. Soc. London, Ser. A, 256(1960), pp. 496–501; “Renewal theory and its ramifications”, J. Roy. Stat. Soc, Ser.B, 20(1958), pp. 243–302.

    MATH  Google Scholar 

  29. Snyder D.L., Miller M.I., Random Point Processes in Time and Space, 2nd Ed. 1991, Springer, Berlin.

    Book  MATH  Google Scholar 

  30. Solovyev A.D., “The problem of optimal servicing”, Eng. Cybernetics, 5(1970), pp. 859–868; “Asymptotic distribution of the moment of first crossing of a high level by a birth and death process”, Proc sixth Berkeley Symp. Math. Stat. Prob., 3(1970), pp. 71–86; “Asymptotic behavior of the time of first occurr. of a rare event in a reg. proc”, Eng. Cybernetics, 6(1971)9, pp. 1038–048.

    MathSciNet  Google Scholar 

  31. Srinivasan S.K., Mehata K.M., Stochastic processes, 2nd Ed. 1988, Tata McGraw-Hill, New Delhi.

    Google Scholar 

  32. Störnier H., Semi-Markoff-Prozesse mit endlich vielen Zuständen, 1970, Springer, Berlin (Lect. Notes in Op. Res. and Math. Syst. Nr. 34).

    Book  Google Scholar 

  33. Takács L., “On certain sojurn time problems in the theory of stoch. proc”, Acta Math. (Hungar), 8(1957), pp. 169–191; Stochastic processes, problems and solutions, 4th Ed. 1968, Methuen, London.

    Article  MATH  Google Scholar 

  34. Thompson W.A., Jr., Point Processes Models with Applications to Safety and Reliability, 1988, Chapman & Hall, New York.

    Book  Google Scholar 

  35. Ascher H., Feingold H., Repairable Systems Reliability, 1984, Dekker, New York.

    MATH  Google Scholar 

  36. Barlow R.E., Proschan F., Mathematical Theory of Reliability, 1965, Wiley, New York; Statistical Theory of Reliability and Life Testing, 1975, Holt Rinehart & Winston, New York.

    MATH  Google Scholar 

  37. Beichelt F., Franken P., Zuverlässigkeit und Instandhaltung — Math. Methoden, 1983, Technik, Berlin;

    Google Scholar 

  38. Beichelt F., Zuverlässigkeits- und Instandhaltbarkeitstheorie, 1993, Teubner, Stuttgart.

    Google Scholar 

  39. Birolini A., “Comments on renewal theoretic aspects of two-unit redundant systems”, IEEE Trans. Rel., 21(1972)2, pp 122–123; “Generalization of the expressions for the rel. and availability of rep. items”, Proc. 2. Int. Conf. on Struct. Mech. in Reactor Techn., Berlin: 1973, Vol. VI, pp. 1–16; “Some appl. of regen. stoch. processes to reliability theory — part two: rel. and availability of 2-item redundant systems”, IEEE Trans. Rel., 24(1975)5, pp. 336–340; On the Use of Stochastic Proc. in Modeling Rel. Problems, 1985, Springer, Berlin (Lecture Notes in Ec. and Math. Systems Nr. 252); Quality and Reliability of Technical Systems, 2nd Ed. 1997, Springer, Berlin; Zuverlässigkeit von Geräten und Systemen, 4th Ed. 1997, Springer, Berlin.

    Article  Google Scholar 

  40. Bobbio A., Roberti L., “Distribution of the minimal completition time of parallel tasks in multi-reward semi-Markov models”, Performance Eval., 14(1992), pp. 239–256.

    Article  MathSciNet  MATH  Google Scholar 

  41. Brenner A., Performability and Dependability of Fault-Tolerant Systems, 1996, Ph. D. Thesis 11623, ETH Zurich.

    Google Scholar 

  42. Choi, C.Y. et al, “Safety issues in the comparative analysis of dependable architectures”, IEEE Trans. Rel., 46(1997)3, pp. 316–322.

    Article  Google Scholar 

  43. Dhillon B.S., Rayapati S.N., “Common-cause failures in repairable systems”, Proc. Ann. Rel. & Maint. Symp., 1988, pp. 283–289.

    Google Scholar 

  44. Dyer D., “Unification of rel./availab. mod. for Markov syst.”, IEEE Trans. Rel, 38(1989)2, pp.246–52.

    Article  MATH  Google Scholar 

  45. Gaede K.W., Zuverlässigkeit Mathematische Modelle, 1977, Hanser, Munich.

    MATH  Google Scholar 

  46. Gnedenko B.V., Beljajev J.K., Soloviev A.D., Mathematical Methods of Reliability Theory, 1969, Academic, New York (1968, Akademie, Berlin).

    MATH  Google Scholar 

  47. Kovalenko I., Birolini A., “Uniform exponential boundes for the availability of a repairable system”, in Exploring Stochastic laws, Homage to V.S. Korolyuk, 1995, VSP, Utrecht, pp.233–242.

    Google Scholar 

  48. Kullstam A., “Availability, MTBF and MTTR for repairable M-out-of-N Systems”, IEEE Trans. Rel., 30(1981)4, pp. 393–394.

    Article  MATH  Google Scholar 

  49. Kumar A., Agarwal M., “A review of standby red. syst”, IEEE Trans. Rel, 29(1980)4, pp. 290–294.

    Article  MATH  Google Scholar 

  50. Osaki S., Nakagawa T., “Bibliography for reliability and availability of stochastic systems”, IEEE Trans. Rel. 25(1976)4, pp. 284–287.

    Article  MathSciNet  MATH  Google Scholar 

  51. Rai S., Agrawal D.P. (Ed.), Advances in Distributed Systems Reliability and Distributed Computing Network Reliability, 1990, IEEE Press, Piscataway NJ.

    Google Scholar 

  52. Ravichandran N., Stochastic Methods in Reliability Theory, 1990, Wiley Eastern, New Dehli.

    MATH  Google Scholar 

  53. Schneeweiss W.G., “Mean time to first failure of repairable systems with one cold spare”, IEEE Trans. Rel., 44(1995)4, pp. 567–574.

    Article  MathSciNet  Google Scholar 

  54. Ushakov I.A., Harrison R., Handbook of Reliability Engineering, 1994, Wiley, New York.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birolini, A. (1999). Basic Stochastic Process Theory. In: Reliability Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03792-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03792-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03794-2

  • Online ISBN: 978-3-662-03792-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics