Mycorrhiza pp 205-228 | Cite as

Electron Microscopy of Ectomycorrhiza: Methods, Applications, and Findings

  • C. Scheidegger
  • I. Brunner


Symbiotic organisms, whether mutualistic (Brown and King 1982; Studer et al. 1992) or parasitic (Mendgen and Lesemann 1991), are among the most difficult specimens to prepare for electron microscopy (EM), both transmission electron microscopy (TEM) and scanning electron microscopy (SEM). New instrumental developments and the adaptation of novel preparation protocols have contributed equally to significant progress in the knowledge of submicroscopical functional morphology of ectomycorrhiza. Ectomycorrhizas are an extracellular mutualistic symbiosis between ectomycorrhizal fungi and the roots of woody plants, and are defined as having a fungal mantle and a Hartig net between the epidermal and cortical root cells (Harley and Smith 1983).


Electron Energy Loss Spectroscopy Wall Ingrowth Ectomycorrhizal Root Pisolithus Tinctorius Cortical Root Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander C, Jones D, McHardy WJ (1987) Scanning electron microscopy of cryofixed mycorrhizas of sitka spruce, Picea sitchensis (Bong.) Carr.: a comparison with critical point-dried material. New Phytol 105: 613–717CrossRefGoogle Scholar
  2. Allaway WG, Carpenter JL, Ashford AE (1985) Amplification of inter-symbiont surface by root epidermal transfer cells in the Pisonia mycorrhiza. Protoplasma 128: 227–231CrossRefGoogle Scholar
  3. Allen MJ (ed) (1992) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New YorkGoogle Scholar
  4. Ashford AE, Allaway WG (1982) A sheathing mycorrhiza on Pisonia grandis R. BR. (Nyctaginaceae) with development of transfer cells rather than a Hartig net. New Phytol 90: 511–519CrossRefGoogle Scholar
  5. Ashford AE, Allaway WG (1985) Transfer cells and Hartig net in the root epidermis of the sheathing mycorrhiza of Pisonia grandis R. Br. from Seychelles. New Phytol 100: 595–612CrossRefGoogle Scholar
  6. Ashford AE, Peterson RL, Dwarte D, Chilvers GA (1986) Polyphosphate granules in eucalypt mycorrhiza determination by energy dispersive X-ray microanalysis. Can J Bot 64: 677–687CrossRefGoogle Scholar
  7. Ashford AE, Peterson CA, Carpenter JL, Cairney JWG, Allaway WG (1988)Structure and permeability of the fungal sheath in the Pisonia mycorrhiza. Protoplasma 147: 149–161Google Scholar
  8. Behrmann P, Heyser W (1992) Apoplastic transport through the fungal sheath of Pinus sylvestris/Suillus bovinus ectomycorrhizae. Bot Acta 105: 427–434Google Scholar
  9. Berndt R, Oberwinkler F (1992) Ultrastructure of septal pores of mycorrhiza-forming ascomycetes. Mycologia 84: 360–366CrossRefGoogle Scholar
  10. Blasius D, Feil W, Kottke I, Oberwinkler F (1986) Hartig net formation in fully ensheated ectomycorrhizas. Nord J Bot 6: 837–842CrossRefGoogle Scholar
  11. Bonfante-Fasolo P, Scannerini S (1992) The cellular basis of plant-fungus interchanges in mycorrhizal associations. In: Allen MJ (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 65–101Google Scholar
  12. Bonfante-Fasolo P, Spanu P (1991) Pathogenic and endomycorrhizal associations. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Techniques for the study of mycorrhiza. Academic Press, London, pp 141–168Google Scholar
  13. Boutekrabt A, Pargney JC (1991) Ultrastructural study of Tuber melanosporum Vitt. in pure culture associated with Quercus, Quercus robur and Quercus pubescens vitroplants. Cryptogam Mycol 12: 25–46Google Scholar
  14. Brown MF, King EJ (1982) Electron microscopy of mycorrhizae. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St Paul, MN, pp 201–217Google Scholar
  15. Brownlee C, Duddridge JA, Malibiari A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71: 433–443CrossRefGoogle Scholar
  16. Brunner I, Scheidegger C (1992) Ontogeny of synthesized Picea abies (L.) Karst.-Hebeloma crustuliniforme (Bull. ex St. Amans) Quél. ectomycorrhizas. New Phytol 120: 359–369CrossRefGoogle Scholar
  17. Brunner I, Scheidegger C (1995) Effects of high nitrogen concentrations on ectomycorrhizal structure and plant growth of Picea abies (L.) Karst. seedlings. New Phytol 129: 83–95CrossRefGoogle Scholar
  18. Buscot F, Kottke I (1990) The association of Morchella rotunda (Pers.) Boudier with roots of Picea abies (L.) Karst. New Phytol 116: 425–430CrossRefGoogle Scholar
  19. Chapman RL, Staehelin LA (1986) Freeze-fracture (-etch) electron microscopy. In: Aldrich HC, Todd WJ (eds) Ultrastructure techniques for microorganisms. Plenum Press, New York, pp 213–240CrossRefGoogle Scholar
  20. Crowley DE, Reid CPP (1985) Scanning, transmission, and freeze fracture electron microscopy of Suillus granulatus-Pinus contorta ectomycorrhiza. In: Molina R (ed) Proc 6th North American Conf on Mycorrhizae, June 25–29, 1984, Bend, Oregon, USA. Forestry Business Office, Corvallis, 341 ppGoogle Scholar
  21. Debaud JC, Pepin R, Bruchet G (1981) Ultrastructure des ectomycorhizes synthétiques d’ Hebeloma alpinum et Hebeloma marginatulum de Dryas octopetala. Can J Bot 59: 2160–2166CrossRefGoogle Scholar
  22. Debaud JC, Gay G, Prevost A, Lei J, Dexheimer J (1988) Ectomycorrhizal ability of genetically different homokaryotic and dikaryotic mycelia of Hebeloma cylindrosporum. New Phytol 108: 323–328CrossRefGoogle Scholar
  23. Denny HJ, Wilkins DA (1987) Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol 106: 545–553Google Scholar
  24. Dexheimer J, Pargney JC (1991) Les interfaces des mycorrhizes. Un exemple d’interactions pariétales. Bull Soc Bot Fr 138: 243–255Google Scholar
  25. Dexheimer J, Aubert-Dufresne M-P, Gerard J, LeTacon F, Mousain D (1986) Etude de la localisation ultrastructurale des activités phosphatasiques acides dans deux types d’Ectomycorhizes: Pinus nigra nigricans/Hebeloma crustuliniforme et Pinus pinaster/Pisolithus tinctorius. Bull Soc Bot Fr 133: 343–352Google Scholar
  26. Dighton J, Jansen AE (1991) Atmospheric pollutants and ectomycorrhizae: more questions than answers? Environ Pollut 73: 179–204PubMedCrossRefGoogle Scholar
  27. Donner B, Heyser W (1989) Buchenmykorrhizen: Möglichkeiten der Elementselektion unter besonderer Berücksichtigung einiger Schwermetalle. Forstwiss Centralbl 108: 150–163CrossRefGoogle Scholar
  28. Duddridge JA (1985) A comparative ultrastructural analysis of the host-fungus interface in mycorrhizal and parasitic associations. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds) Developmental biology of higher fungi. Cambridge University Press, Cambridge, pp 141–173Google Scholar
  29. Duddridge JA (1986) The development and ultrastructure of ectomycorrhizas. III. Compatible and incompatible interactions between Suillus grevillei (Klotzsch) Sing. and 11 species of ectomycorrhizal hosts in vitro in the absence of exogenous carbohydrate. New Phytol 103: 457–464CrossRefGoogle Scholar
  30. Duddridge JA (1987) Specificity and recognition in ectomycorrhizal associations. In: Pegg GF, Ayres PG (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 25–44Google Scholar
  31. Duddridge JA, Read DJ (1984) Modification of the host-fungus interface in mycorrhizas synthesized between Suillus bovinus (Fr.) O. Kuntze and Pinus sylvestris L. New Phytol 96: 583–588CrossRefGoogle Scholar
  32. Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287: 834–836CrossRefGoogle Scholar
  33. Duddridge JA, Finlay RD, Read DJ, Söderström B (1988) The structure and function of the vegetative mycelium of ectomycorrhizal plants. New Phytol 108: 183–188CrossRefGoogle Scholar
  34. Echlin P (1992) Low-temperature microscopy and analysis. Plenum Press, New York Farley AN, Shah JS (1991) High-pressure scanning electron microscopy of insulating materials: a new approach. J Microsc 164: 107–126CrossRefGoogle Scholar
  35. Foster RC (1981) Mycelial strands of Pinus radiata ultrastructure and histochemistry. New Phytol 88: 705–712CrossRefGoogle Scholar
  36. Fox FM (1986) Ultrastructure and effectivity of sclerotium-like bodies of the ectomycorrhizal fungus Hebeloma sacchariolens, on birch (Betula spp.). Trans Br Mycol Soc 87: 359–369CrossRefGoogle Scholar
  37. Fox FM (1987) Ultrastructure of mycelial strands of Leccinum scabrum ectomycorrhizal on birch (Betula spp.). Trans Br Mycol Soc 89: 551–560CrossRefGoogle Scholar
  38. Frey B, Brunner I, Walther P, Scheidegger C, Zierold K (1997) Element localization in ultrathin cryosections of high-pressure frozen ectomycorrhizal spruce roots. Plant Cell Environ 20: 929–937CrossRefGoogle Scholar
  39. Fritz E (1989) X-ray microanalysis of diffusible elements in plant cells after freeze-drying, pressure infiltration with ether and embedding in plastic. Scanning Microsc 3: 517–526Google Scholar
  40. Gianinazzi S, Gianinazzi-Pearson V (1991) Cytology, histochemistry and immunocytochemistry as tools for studying structure and function in endomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Techniques for the study of mycorrhiza. Academic Press, London, pp 109–140Google Scholar
  41. Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant fiavonoids. Symbioses 7: 243–255Google Scholar
  42. Giollant M, Guillot J, Damez M, Dusser M, Didier P, Didier E (1993) Characterization of a lectin from Lactarius deterrimus: research on the possible involvement of the fungal lectin in recognition between mushroom and spruce during the early stages of mycorrhiza formation. Plant Physiol 101: 513–522PubMedGoogle Scholar
  43. Grellier B, Strullu DG, Martin F, Renaudin S (1989) Synthesis in-vitro microanalysis and phosphorus-31 NMR study of metachromatic granules in birch mycorrhizas. New Phytol 112: 49–54CrossRefGoogle Scholar
  44. Hall TA, Gupta BL (1983) The localization and assay of chemical elements by microprobe methods. Q Rev Biophys 16: 279–339PubMedCrossRefGoogle Scholar
  45. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  46. Haug I, Weber R, Oberwinkler F, Tschen J (1991) Tuberculate mycorrhizas of Castanopsis borneensis King and Engelhardtia roxburghiana Wall. New Phytol 117: 25–36CrossRefGoogle Scholar
  47. Hermann R, Müller M (1993) Progress in scanning electron microscopy of frozen-hydrated specimens. Scanning Microsc 7: 343–350PubMedGoogle Scholar
  48. Hodson MJ, Wilkins DA (1991) Localization of aluminum in the roots of Norway spruce Picea abies L. Karst. inoculated with Paxillus involutus Fr. New Phytol 118: 273–278CrossRefGoogle Scholar
  49. Holopainen T, Heinonen-Tanski H (1993) Effects of different nitrogen sources on the growth of Scots pine seedlings and the ultrastructure and development of their mycorrhizae. Can J For Res 23: 362–372CrossRefGoogle Scholar
  50. Isaacson M, Johnson D (1975) The microanalysis of light elements using transmitted energy loss electrons. Ultramicroscopy 1: 33–52PubMedCrossRefGoogle Scholar
  51. Jacobs PF, Peterson RL, Massicotte HB (1989) Altered fungal morphogenesis during early stages of ectomycorrhiza formation in Eucalyptus pilularis. Scanning Microsc 3: 249–255Google Scholar
  52. Jeffree C, Read ND (1991) Ambient-and low-temperature scanning electron microscopy. In: Hall JL, Hawes C (eds) Electron microscopy of plant cells. Academic Press, London, pp 313–413Google Scholar
  53. Jentschke G (1990) Die Wirkung von Aluminium, Blei and Stickstoff auf mykorrhizierte Fichtenkeimlinge in monoxenischer Sandkultur. Ber Forschungszentr Waldökosyst Univ Göttingen, Reihe A, 55: 1–104Google Scholar
  54. Jentschke G, Fritz E, Gobold DL (1991a) Distribution of lead in mycorrhizal and nonmycorrhizal Norway spruce seedlings. Physiol Plant 81: 417–422CrossRefGoogle Scholar
  55. Jentschke G, Schlegel H, Godbold DL (1991b) The effect on aluminium on uptake and distribution of magnesium and calcium in roots of mycorrhizal Norway spruce seedlings. Physiol Plant 82: 266–270CrossRefGoogle Scholar
  56. Kottke I (1991) Electron energy loss spectroscopy and imaging techniques for subcellular localization of elements in mycorrhiza. In: Norris JR, Read DJ, Varma AKGoogle Scholar
  57. Methods in microbiology, vol 23. Techniques for the study of mycorrhiza. Academic Press, London, pp 369–382Google Scholar
  58. Kottke I (1994) Localization and identification of elements in mycorrhizas: Advantages and limits of electron energy loss spectroscopy. Acta Bot Gallica 141: 507–510Google Scholar
  59. Kottke I, Oberwinkler F (1986a) Mycorrhiza of forest trees — Structures and function. Trees 1: 1–24CrossRefGoogle Scholar
  60. Kottke I, Oberwinkler F (1986b) Root-fungus interactions observed on initial stages of mantle formation and Hartig net establishment in mycorrhizas of Amanita muscaria on Picea abies in pure culture. Can J Bot 64: 2348–2354CrossRefGoogle Scholar
  61. Kottke I, Oberwinkler F (1987) The cellular structure of the Hartig net: coenotic and transfer cell-like organization. Nord J Bot 2: 85–95CrossRefGoogle Scholar
  62. Kottke I, Oberwinkler F (1988) Comparative studies on the mycorrhization of Larix decidua and Picea abies by Suillus grevillei. Trees 2: 115–128CrossRefGoogle Scholar
  63. Lapeyrie F, Lei J, Malajczuk N, Dexheimer J (1989) Ultrastructural and biochemical changes at the preinfection stage of mycorrhizal formation by two isolates of Pisolithus tinctorius. Ann Sci For 46: 154–757CrossRefGoogle Scholar
  64. Leapman R (1989) Application of parallel-detection electron energy loss spectroscopy in biology. In: Zierold K, Hagler HK (eds) Electron probe microanalysis. Springer, Berlin Heidelberg New York, pp 113–125CrossRefGoogle Scholar
  65. Lei J, Dexheimer J (1988) Ultrastructural localization of ATPase activity in the Pinus sylvestris/Laccaria laccata ectomycorrhizal association. New Phytol 108: 329–334CrossRefGoogle Scholar
  66. Lei J, Lapeyrie F, Malajczuk N, Dexheimer J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius (Pers.) Coker and Couch on roots of Eucalyptus urophylla S.T. Blake in vitro. II. Ultrastructural and biochemical changes at the early stage of mycorrhiza formation. New Phytol 116: 115–122CrossRefGoogle Scholar
  67. Marks GC, Foster RC (1973) Structure, morphogenesis, and ultrastructure of ectomycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: their ecology and physiology. Academic Press, New York, pp 1–41Google Scholar
  68. Massicotte HB, Ackerley CA, Peterson RL (1985) An improved fixation protocol for ultrastructural studies of ectomycorrhizae. Proc Microsc Soc Can 12: 68–69Google Scholar
  69. Massicotte HB, Peterson RL, Ackerley CA, Piché Y (1986) Structure and ontogeny of Alnus crispa-Alpova diplophloeus ectomycorrhizae. Can J Bot 64: 177–192CrossRefGoogle Scholar
  70. Massicotte HB, Ackerley CA, Peterson RL (1987a) Localization of three sugar residues in the interface of mycorrhizae synthesized between Alnus crispa and Alpova diplophloeus as demonstrated by lectin binding. Can J Bot 65: 1127–1132CrossRefGoogle Scholar
  71. Massicotte HB, Peterson RL, Ackerley CA (1987b) Ontogeny of Eucalyptus pilularisPisolithus tinctorius ectomycorrhizae. II. Transmission electron microscopy. Can J Bot 65: 1940–1947CrossRefGoogle Scholar
  72. Massicotte HB, Peterson RL, Ashford AE (1987c) Ontogeny of Eucalyptus pilularisPisolithus tinctorius ectomycorrhizae. I. Light microscopy and scanning electron microscopy. Can J Bot 65: 1927–1939CrossRefGoogle Scholar
  73. Miassicotte HB, Ackerley CA, Peterson RL (1989) Ontogeny of Alnus rubra-Alpova diplophloeus ectomycorrhizae. II. Transmission electron microscopy. Can J Bot 67: 201–210CrossRefGoogle Scholar
  74. Massicotte HB, Peterson RL, Ackerley CA, Melville LH (1990) Structure and ontogeny of Betula alleghaniensis-Pisolithus tinctorius ectomycorrhizae. Can J Bot 68: 579–593CrossRefGoogle Scholar
  75. Massicotte HB, Melville LH, Li CY, Peterson RL (1992a) Structural aspects of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) tuberculate ectomycorrhizae. Trees 6: 137–146CrossRefGoogle Scholar
  76. Massicotte HB, Trappe JM, Peterson RL, Melville LH (1992b) Studies on Cenococcum geophilum. II. Sclerotium morphology, germination, and formation in pure culture and growth pouches. Can J Bot 70: 125–132CrossRefGoogle Scholar
  77. McQuattie CJ, Schier GA (1992) Effect of ozone and aluminum on pitch pine (Pinus rigida) seedlings: anatomy of mycorrhizae. Can J For Res 22: 1901–1916CrossRefGoogle Scholar
  78. Melville LH, Massicotte HB, Ackerley CA, Peterson RL (1988) An ultrastructural study of modifications in Dryas integrifolia and Hebeloma cylindrosporum during ectomycorrhiza formation. Bot Gaz 149: 408–418CrossRefGoogle Scholar
  79. Mendgen K, Lesemann DE (1991) Electron microscopy of plant pathogens. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  80. Moor H (1987) Theory and practice of high-pressure freezing. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York, pp 175–191CrossRefGoogle Scholar
  81. Moore AEP, Massicotte HB, Peterson RL (1989) Ectomycorrhiza formation between Eucalyptus pilularis Sm. and Hydnangium carneum Wallr. in Dietr. New Phytol 112: 193–204Google Scholar
  82. Moore AEP, Ashford AE, Peterson RL (1991) Reserve substances in Paxillus involutus-sclerotia determination by histochemistry and X-ray microanalysis. Protoplasma 163: 67–81CrossRefGoogle Scholar
  83. Müller T, Guggenheim R, Düggelin M, Mestres P, Van Aelst AC, Heyser W, Kumpfer W (1988) Freeze etching and cryo scanning microscopy (CSEM) of plant and animal tissue with SCU 020. In: Dickinson HG, Goodhew PJ (ed) EUREM 88; Proc 9th Eur Congr on Electron microscopy, York, UK, 4–9 Sept 1988, vol 3: Biology. Institute of Physics Conference Series Number 93, Bristol and Philadelphia, pp 15–16Google Scholar
  84. Müller T, Guggenheim R, Düggelin M, Scheidegger C (1991) Freeze-fracturing for conventional and field emission low-temperature scanning electron microscopy: the scanning cryo unit SCU 020. J Microsc 161: 73–83CrossRefGoogle Scholar
  85. Nylund JE (1980) Symplastic continuity during Hartig net formation in Norway spruce ectomycorrhizae. New Phytol 86: 373–378CrossRefGoogle Scholar
  86. Nylund JE (1988) The regulation of mycorrhiza formation. Carbohydrate and hormone theories reviewed. Scand J For Res 3: 465–479CrossRefGoogle Scholar
  87. Orlovich DA, Ashford AE, Cox GC (1989) A reassessment of polyphosphate granule composition in the ectomycorrhizal fungus Pisolithus tinctorius. Aust J Plant Physiol 16: 107–116CrossRefGoogle Scholar
  88. Orlovich DA, Ashford AE, Cox GC, Moore AEP (1990) Freeze-substitution and X-ray microanalysis of polyphosphate granules in the mycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch. In: Nardon P (eds) Endocytobiology. INRA, Paris, pp 139–144Google Scholar
  89. Pargney JC (1990) Essai de caractérisation cytochimique des structures de l’interface an niveau du résau de Hartig dans l’association ectomycorhizienne entre la truffle (Tuber melanosporum) et le noisetier (Corylus avellana). Can J Bot 68: 2722–2728CrossRefGoogle Scholar
  90. Pargney JC (1991) Cytochimie ultrastructurale des interfaces présentes dans l’association ectomycorhizienne Tuber melanosporum Vitt.-Corylus avellana L. Cryptogam Mycol 12: 47–61Google Scholar
  91. Pargney JC, Leduc JP (1990) Etude ultrastructurale de l’association mycorhizienne Noisetier/Truffe (Corylus avelland/Tuber melanosporum). Bull Soc Bot Fr 137: 21–34Google Scholar
  92. Pasqualini S, Panara F, Antonielli M (1992) Acid phosphatase activity in Pinus pineaTuber albidum ectomycorrhizal association. Can J Bot 70: 1377–1383CrossRefGoogle Scholar
  93. Perotto S, Malavasi F, Butcher GW (1991) Use of monoclonal antibodies to study mycorrhiza: present applications and perspectives. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Techniques for the study of mycorrhiza. Academic Press, London, pp 221–248Google Scholar
  94. Piché Y, Peterson RL, Howarth MJ, Fortin JA (1983) A structural study of the interaction between the ectomycorrhizal fungus Pisolithus tinctorius and Pinus strobus roots. Can J Bot 61: 1185–1193CrossRefGoogle Scholar
  95. Piché Y, Peterson RL, Massicotte HB (1988) Host-fungus interactions in ectomycorrhizae. In: Scannerini S, Smith D, Bonfante-Fasolo P, Gianinazzi V (eds) Cell to cell signals in plant, animal and microbial symbioses. Springer, Berlin Heidelberg New York, pp 55–71CrossRefGoogle Scholar
  96. Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) (1992) Mycorrhizas in ecosystems. CAB International, OxonGoogle Scholar
  97. Read ND (1991) Low-temperature scanning electron microscopy of fungi and fungusplant interactions. In: Mendgen K, Lesemann DE (eds) Electron microscopy of plant pathogens. Springer, Berlin Heidelberg New York, pp 17–29CrossRefGoogle Scholar
  98. Read ND, Jeffree CE (1991) Low temperature SEM in biology. J Microsc 161: 59–72PubMedCrossRefGoogle Scholar
  99. Scales PF, Peterson RL (1991) Structure of ectomycorrhizae formed by Wilcoxina mikolae var. mikolae with Picea mariana and Betula alleghaniensis. Can J Bot 69: 2149–2157CrossRefGoogle Scholar
  100. Scannerini S, Bonfante-Fasolo P (1983) Comparative ultrastructural analysis of mycorrhizal associations. Can J Bot 61: 917–943CrossRefGoogle Scholar
  101. Scheidegger C, Brunner I (1992) Complementary freeze-fractures for low-temperature SEM of ectomycorrhizas: a new approach for studying the Hartig net. In: MegiasMegias L, Rodriguez-Garcia MI, Rios A, Arias JM (eds) Electron microscopy, vol 3. EUREM 92. Segretariado de Publicationes del la Universidad, Granada, pp 81–82Google Scholar
  102. Scheidegger C, Brunner I (1993) Freeze-fracturing for low temperature scanning electron microscopy of Hartig net in synthesized Picea abies (L.) Karst.-Hebeloma crustuliniforme (Bull. ex St. Amans) Quél. and -Tricholoma vaccinum (Pers.:Fr.) Kummer ectomycorrhizas. New Phytol 123: 123–132CrossRefGoogle Scholar
  103. Shafer SR, Schoeneberger MM (1991) Mycorrhizal mediation of plant response to atmospheric change: air quality concepts and research considerations. Environ Pollut 73: 163–177PubMedCrossRefGoogle Scholar
  104. Sitte H, Edelmann L, Neumann K (1987) Cryofixation without pretreatment at ambient pressure. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York, pp 87–113CrossRefGoogle Scholar
  105. Snetselaar KM, Whitney KD (1990) Fungal calcium oxalate in mycorrhizae of Monotropa uniflora. Can J Bot 68: 533–543CrossRefGoogle Scholar
  106. Steinbrecht RA, Müller M (1987) Freeze-substitution and freeze-drying. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York, pp 149–172CrossRefGoogle Scholar
  107. Strullu DG (1985) Les mycorhizes. Borntraeger, BerlinGoogle Scholar
  108. Strullu DG, Harley JL, Gourret JP, Garrec JP (1982) Ultrastructure and microanalysis of the polyphosphate granules of the ectomycorrhizas of Fagus sylvatica. New Phytol 92: 417–423CrossRefGoogle Scholar
  109. Strullu DG, Grellier B, Garrec JP (1984) Microanalysis of the host-fungus interface in mycorrhizae. Physiol Vég 22: 863–866Google Scholar
  110. Studer D, Hennecke H, Müller M (1992) High-pressure freezing of soybean nodules leads to an improved preservation of ultrastructure. Planta 188: 155–163CrossRefGoogle Scholar
  111. Thomson J, Melville LH, Peterson RL (1989) Interaction between the ectomycorrhizal fungus Pisolithus tinctorius and root hairs of Picea mariana (Pinaceae). Am J Bot 76: 632–636CrossRefGoogle Scholar
  112. Turnau K, Kottke I, Oberwinkler F (1993) Paxillus involutus-Pinus sylvestris mycorrhizae from heavily polluted forest. I. Element localization using electron energy loss spectroscopy and imaging. Bot Acta 106: 213–219Google Scholar
  113. Turnau K, Kottke I, Dexheimer J (1996) Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol Res 100: 16–22CrossRefGoogle Scholar
  114. Van Steveninck RFM, Van Steveninck ME (1991) Micronanalysis. In: Hall JL, Hawes C (eds) Electron microscopy of plant cells. Academic Press, London, pp 415–455Google Scholar
  115. Väre H (1990) Aluminium polyphoshate in the mycorrhizal fungus Suillus variegatus (Fr.) O. Kuntze as revealed by energy dispersive spectrometry. New Phytol 116: 663–668CrossRefGoogle Scholar
  116. Walther P, Hentschel J, Herter P, Müller T, Zierold K (1990) Imaging of intramembranous particles in frozen-hydrated cells (Saccharomyces cerevisiae) by high resolution cryo SEM. Scanning 12: 300–307CrossRefGoogle Scholar
  117. Warmbrodt RD, Eschrich W (1985) Studies on the mycorrhizal of Pinus sylvestris L. produced in vitro with the basidiomycete Suillus variegatus (SW. ex Fr.) O. Kuntze. I. Ultrastructure of the mycorrhizal rootlets. New Phytol 100: 215–223CrossRefGoogle Scholar
  118. Wasserman JL, Mineo L, Majunder SK, Van Tyne C (1987) Detection of heavy metals in oak mycorrhizae of northeastern Pennsylvania forests using X-ray microanalysis. Can J Bot 65: 2622–2627CrossRefGoogle Scholar
  119. Wong KKY, Montpetit D, Piché Y, Lei J (1990) Root colonization by four closely related genotypes of the ectomycorrhizal basidiomycete Laccaria bicolor (Maire) Orton — Comparative studies using electron microscopy. New Phytol 116: 669–679CrossRefGoogle Scholar
  120. Zierold K (1985) Preparation of cryosections for biological microanalysis. In: Piché M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation for microscopy and microanalysis 1985. Scanning Electron Microscopy, AMF O’Hare (Chicago), pp 119–127Google Scholar
  121. Zierold K, Steinbrecht RA (1987) Cryofixation of diffusible elements in cells and tissues for electron probe microanalysis. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York, pp 272–284CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • C. Scheidegger
  • I. Brunner
    • 1
  1. 1.Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland

Personalised recommendations