Mycorrhiza pp 499-520 | Cite as

The Status and Function of Ericoid Mycorrhizal Systems

  • D. J. Read
  • S. Kerley

Abstract

While ecologists have recognised the association between plants of the order Ericales and nutrient impoverished soils, it has been customary for them to emphasise above-ground features when considering the attributes which may confer success upon its constituent families and their close relatives. Specht (1979), for example, described the heathlands of the world as being defined by the presence of the families Ericaceae, Empetraceae, Epacridaceae, Diapensiaceae and Prionotocaeae, all of which were characterised by their possession of an evergreen sclerophyllous habit. Sclerophylly may, as pointed out by Specht and Rundel (1990), be a product of low nutrient availablity, since it is inevitable that as supplies of the major elements nitrogen (N) and phosphorus (P) decline, increasing proportions of fixed carbon are diverted from functional to the structural components cellulose, lignin and its phenolic precursors. However, the consequences of these above-ground modifications for the quality of the resources derived from them in the form of litter, and the relationship between the quality of substrates and the attributes required for mobilisation of their sequestered nitrogen and phosphorus have received relatively little attention.

Keywords

Biomass Cellulose Toxicity Phosphorus Phenol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abuarghub SM, Read DJ (1988) The biology of mycorrhiza in the Ericaceae. XII. Quantitative analysis of individual “free” amino acids in relation to time and depth in the soil profile. New Phytol 108: 433–441Google Scholar
  2. Allen WK, Allaway WG, Cox GC, Valder PG (1989) Ultrastructure of mycorrhizas of Dracophyllum secundum R. Br. (Ericales: Epacridaceae ). Aust J Plant Physiol 16: 147–154Google Scholar
  3. Bååth E, Söderström B (1979) Fungal biomass and fungal immobilisation of plant nutrients in Swedish coniferous forest soils. Rev Ecol Biol Sol 16: 477–489Google Scholar
  4. Bain HF (1937) Production of synthetic mycorrhiza in the cultivated cranberry. J Agric Res 55: 811–835Google Scholar
  5. Bajwa R, Read DJ (1985) The biology of mycorrhiza in the Ericaceae IX Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and nonmycorrhizal plants. New Phytol 101: 459–467CrossRefGoogle Scholar
  6. Bajwa R, Read DJ (1986) Utilization of mineral and amino N sources by the ericoid mycorrhizal endophyte Hymenoscyphus ericae and by mycorrhizal and nonmycorrhizal seedlings of Vaccinium. Trans Br Mycol Soc 87: 269–277CrossRefGoogle Scholar
  7. Bajwa R, Abuarghub S, Read DJ (1985) The biology of mycorrhiza in the Ericaceae. X. The utilization of proteins and the production of proteolytic enzymes by the mycorrhizal endophyte and by mycorrhizal plants. New Phytol 101: 469–486Google Scholar
  8. Bonfante-Fasolo P (1980) Occurrence of a basidiomycete in living cells of mycorrhizal hair roots of Calluna vulgaris. Trans Br Mycol Soc 75: 320–325CrossRefGoogle Scholar
  9. Bradley R, Burt AJ, Read DJ (1981) Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature (Lond) 292: 335–337CrossRefGoogle Scholar
  10. Bradley R, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91: 197–209Google Scholar
  11. Burgeff H (1961) Mikrobiologie des Hochmoores. Gustav Fischer, StuttgartGoogle Scholar
  12. Burt AJ, Hashem AR, Shaw G, Read DJ (1986) Comparative analysis of metalGoogle Scholar
  13. tolerance in ericoid and ectomycorrhizal fungi. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Proc 1st Eur Symp on Mycorrhizas. INRA, Paris, pp 683–687Google Scholar
  14. Chapin FS, Morilanen L, Keilland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361: 150–153CrossRefGoogle Scholar
  15. Couture M, Fortin JA, Dalpé Y (1983) Oidiodendron griseum Robak. An endophyte of ericoid mycorrhiza in Vaccinium species. New Phytol 95: 375–380Google Scholar
  16. Dalpé Y (1986) Axenic synthesis of ericoid mycorrhiza in Vaccinium angustifolium Ait. by Oidiodendron species. New Phytol 103: 391–396CrossRefGoogle Scholar
  17. Dalpé Y (1989) Ericoid mycorrhizal fungi in the Myxotrichaceae and Gymnoascaceae. New Phytol 113: 523–527CrossRefGoogle Scholar
  18. Dalpé Y (1991) Statut endomycorhizien du genre Oidiodendron. Can J Bot 69: 1712–1714CrossRefGoogle Scholar
  19. Dalpé Y, Litten W, Sigler L (1989) Scytalidium vaccinii a new species, an ericoid endophyte of Vaccinium angustifolium roots. Mycotaxon 35: 371–378Google Scholar
  20. Dighton J, Coleman DC (1991) Phosphorus relations of roots and mycorrhizas of Rhododendron maximum L. in the southern Appalachians, North Carolina. Mycorrhiza 1: 175–184Google Scholar
  21. Doak KD (1928) The mycorrhizal fungus of Vaccinium. Phytopathology 18: 101–108Google Scholar
  22. Douglas CG, Heslin MC, Read C (1989) Isolation of Oidiodendron malus from Rhododendron and ultrastructural characterisation of synthesised mycorrhizas. Can J Bot 67: 2206–2212CrossRefGoogle Scholar
  23. Duddridge JA, Read DJ (1982) An ultrastructural analysis of the development of mycorrhizas in Rhododendron ponticum. Can J Bot 60: 2345–2356CrossRefGoogle Scholar
  24. Egger KN, Sigler L (1993) Relatedness of the ericoid endophytes Scytalidium vaccinii and Hymenoscyphus ericae inferred from analysis of ribosomal DNA. Mycologia 85: 219–230CrossRefGoogle Scholar
  25. Englander L, Hull RJ (1980) Reciprocal transfer of nutrients between ericaceous plants and a Clavaria sp. New Phytol 84: 661–667CrossRefGoogle Scholar
  26. Friesleben R (1933) Über experimentelle Mykorrhiza-Bildung bei den Ericaceen. Ber Dtsch Bot Ges 51: 351–356Google Scholar
  27. Friesleben R (1936) Weitere Untersuchungen über die Mykotrophie der Ericaceen. Jahrb Wiss Bot 82: 413–459Google Scholar
  28. Gimingham CH (1960) Biological flora of the British Isles. Callum vulgaris L. Hull. J Ecol 48: 455–483CrossRefGoogle Scholar
  29. Gimingham CH (1972) Ecology of heathlands. Chapman and Hall, LondonGoogle Scholar
  30. Groves RH (1981) Heathland soils and their fertility status. In: Specht RL (ed) Ecosystems of the world. Heathland and related shrublands, vol 9B Elsevier,Amsterdam, pp 151–163Google Scholar
  31. Harley JL (1959) The biology of mycorrhiza. Leonard Hill, LondonGoogle Scholar
  32. Haselwandter K, Read DJ (1983) Die Mykorrhizainfektion von Rhodothamnus chamaecistus ( L.) Rehb., einer ostalpinen, calcicolen Ericacae. Sydowia Ann Mycol II 36: 75–77Google Scholar
  33. Haselwandter K, Bobleter O, Read DJ (1990) Utilisation of lignin by ericoid and ectomycorrhizal fungi. Arch Mikrobiol 153: 352–354Google Scholar
  34. Heil GW, Diemont WM (1983) Raised nutrient levels change heathland into grassland. Vegetatio 53: 113–120CrossRefGoogle Scholar
  35. Hutton BJ, Dixon KW, Sivasithamparam K (1994) Ericoid endophytes of Western Australian heaths ( Epacridaceae ). New Phytol 127: 557–566Google Scholar
  36. Jalal MAF, Read DJ (1983a) The organic acid composition of Calluna heathland soil with special reference to phyto-and fungi-toxicity. I. Isolation and identification of organic acids. Plant Soil 70: 257–272Google Scholar
  37. Jalal MAF, Read DJ (1983b) The organic acid composition of Calluna heathland soil with special reference to phyto-and fungi-toxicity. II. Monthly quantitative determination of the organic acid content of Calluna and spruce dominated soils. Plant Soil 70: 273–286CrossRefGoogle Scholar
  38. Johnson CR, Joiner JN, Crews CE (1980) Effects of N, K and Mg on growth and leaf nutrient composition of three container grown woody ornamentals inoculated with mvcorrhizae. J Am Soc Hortic Sci 105: 286–288Google Scholar
  39. Kerley S, Read DJ (1997) The biology of mycorrhiza in the Ericaceae. XIX The mobilisation and assimilation of nitrogen from fungal necromass by H. ericue and mycorrhizal plants. New Phytol 136: 691–701CrossRefGoogle Scholar
  40. Koch R (1912) Complete works, vol 1: George Thieme, Leipzig, pp 650–660 Koske RE, Gemma JN, Englander L (1990) Vesicular-arbuscular mycorrhizae in Hawaian Ericales. Am J Bot 77: 64–68Google Scholar
  41. Lamont BB (1984) Specialised modes of nutrition. In: Pate JS, Beard JS (eds) Kwongan: plant life of the sandplain. University of Western Australia Press, Perth, pp 236–245Google Scholar
  42. Largent DL, Sugihara N, Wishner C (1980) Occurrence of mycorrhizae on ericaceous and pyrolacean plants in northern California. Can J Bot 58: 2274–2279CrossRefGoogle Scholar
  43. Leake JR, Read DJ (1989) The biology of mycorrhiza in the ericaceae. XIII. Some characteristics of the extracellular proteinase activity of the ericoid endophyte Hymenoscyphus ericae. New Phytol 112: 69–76CrossRefGoogle Scholar
  44. Leake JR, Read DJ (1990a) Proteinase activity in mycorrhizal fungi. I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol 115: 243–250Google Scholar
  45. Leake JR, Read DJ (1990b) Chitin as a nitrogen source for mycorrhizal fungi. Mycol Res 94: 993–995CrossRefGoogle Scholar
  46. Leake JR, Read DJ (1990c) The effects of phenolic compounds on nitrogen mobilisation by ericoid mycorrhizal system. Agric Ecosyst Environ 29: 225–236CrossRefGoogle Scholar
  47. Leake JR, Read DJ (1991) Experiments with ericoid mycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology 23. Academic Press, London, pp 435–459Google Scholar
  48. Mitchell DT, Read DJ (1986) Utilization of inorganic and organic phosphates by the mycorrhizal endophytes of Vaccinium macrocarpon and Rhododendron ponticum. Trans Br Mycol Soc 76: 255–260CrossRefGoogle Scholar
  49. Moore-Parkhurst S, Englander L (1982) Mycorrhizal status of Rhododendron spp. in commercial nurseries in Rhode Island. Can J Bot 60: 2342–2344Google Scholar
  50. Mueller WC, Tessier BJ, Englander L (1986) Immunocytochemical detection of fungi in the roots of Rhododendron. Can J Bot 64: 718–725CrossRefGoogle Scholar
  51. O’Dell TE, Massicotte HB, Trappe JM (1993) Root colonization of Lupinus latifolius Agardh. and Pinus contorta Dougl. by Phialocephala fortinii Wang and Wilcox. New Phytol 124: 93–100CrossRefGoogle Scholar
  52. Pate JS, Hopper SD (1993) Rare and common plants in ecosystems, with special reference to the south-west Australian flora. In: Schultze ED, Mooney HA (eds) Biodiversity and ecosystem function. Ecological studies 99. Springer, Berlin Heidelberg, New York, pp 293–325Google Scholar
  53. Pate JS, Steward GR, Unkovitch M (1993) 15 N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilisation, life form, mycorrhizal status and N2-fixing abilities of component species. Plant Cell Environ 16: 365–373Google Scholar
  54. Pearson V, Read DJ (1973) The biology of mycorrhiza in the Ericaceae. I. The isolation of the endophyte and synthesis of mycorrhizas in aseptic cultures. New Phytol 72: 371–379Google Scholar
  55. Pearson V, Read DJ (1975) The physiology of the mycorrhizal endophyte Calluna vulgaris. Trans Br Mycol Soc 64: 1–7CrossRefGoogle Scholar
  56. Peterson TA, Mueller WC, Englander L (1980) Anatomy and ultrastructure of a Rhododendron root-fungus association. Can J Bot 58: 2421–2433CrossRefGoogle Scholar
  57. Rayner MC (1915) Obligate symbiosis in Calluna vulgaris. Ann Bot (Lond) 29: 97–133Google Scholar
  58. Rayner MC (1925) The nutrition of mycorrhiza plants: Calluna vulgaris. Br J Exp Biol 2: 265–291Google Scholar
  59. Rayner MC (1929) Biology of fungus infection in the genus Vaccinium. Ann Bot (Lond) 43: 55–70Google Scholar
  60. Read DJ (1974) Pezizella ericae sp. nov., the perfect state of a typical mycorrhizal endophyte of the Ericaceae. Trans Br Mycol Soc 63:381–383Google Scholar
  61. Read DJ (1983) The biology of mycorrhiza in the Ericales. Can J Bot 61: 985–1004CrossRefGoogle Scholar
  62. Read DJ (1984) Interactions between ericaceous plants and their competitors with special reference to soil toxicity. Aspects Appl Biol 5: 195–209Google Scholar
  63. Read DJ (1989) Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc R Soc Edinb 96B: 80–110Google Scholar
  64. Read DJ (1991) The mycorrhizal fungal community with special reference to nutrient mobilization In: Carroll GC, Wicklow DT (eds) The fungal community. Marcel Dekker, New York, pp 631–652Google Scholar
  65. Read DJ (1993) Plant-microbe mutualisms and community structure. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Ecological studies 99. Springer, Berlin, Heidelberg, New York, pp 181–210Google Scholar
  66. Read DJ, Stribley DP (1975) Some mycological aspects of the biology of mycorrhiza in the Ericaceae. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 105–119Google Scholar
  67. Reed ML (1989) Ericoid mycorrhizas of Styphelidae: intensity of infection and nutrition of the symbionts. Aust J Plant Physiol 16: 155–160CrossRefGoogle Scholar
  68. Seviour RJ, Willing RR, Chilvers GA (1973) Basidiocarps associated with ericoid mycorrhizas. New Phytol 72: 381–385CrossRefGoogle Scholar
  69. Specht RL (1979) Heathlands and related shrublands of the world. In: Specht RL (ed) Ecosystems of the world. Heathlands and related shrublands. vol 9A Elsevier, Amsterdam: pp 1–18Google Scholar
  70. Specht RL, Rundel PW (1990) Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern Australia. Aust J Bot 38: 459–474CrossRefGoogle Scholar
  71. Stoyke G, Currah RS (1991) Endophytic fungi from the mycorrhizae of alpine ericoid plants. Can J Bot 69: 347–352CrossRefGoogle Scholar
  72. Straker CJ, Mitchell DT (1986) The activity and characterization of acid phosphatases in endomycorrhizal fungi of the Ericaceae. New Phytol 104: 243–256CrossRefGoogle Scholar
  73. Straker CJ, Gianinazzi-Pearson V, Gianinazzi S, Gleyet-Marel J-C, Bousquet N (1989) Electrophoretic and immunological studies on acid phosphatase from a mycorrhizal fungus of Erica hispidula L. New Phytol 111: 215–221CrossRefGoogle Scholar
  74. Stribley DP, Read DJ (1974) The biology of mycorrhiza in the Ericaceae IV. The effects of mycorrhizal infection on the uptake of i5 N from labelled soil by Vaccinium macrocarpon Ait. New Phytol 73: 1149–115CrossRefGoogle Scholar
  75. Stribley DP, Read DJ (1976) The biology of mycorrhiza in the Ericaceae. VI. The effects of mycorrhizal infection and concentration of ammonium nitrogen on growth of cranberry (Vaccinium macrocarpon Ait.) in sand culture. New Phytol 77: 63–72CrossRefGoogle Scholar
  76. Stribley DP, Read DJ (1980) The biology of mycorrhiza in the Ericaceae. VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic nitrogen sources. New Phytol 86: 365–371Google Scholar
  77. Stribley DP, Read DJ, Hunt R (1975) The biology of mycorrhiza in the Ericaceae. V. The effect of mycorrhizal infection, soil type and partial soil sterilisation on growth of cranberry (Vaccinium macrocarpon Ait). New Phytol 75: 119–130CrossRefGoogle Scholar
  78. Taylor CMA, Tabbush PM (1990) Nitrogen deficiency in sitka spruce plantations. Forestry Commission Bulletin 89. HMSO, LondonGoogle Scholar
  79. Wilcox HE, Wang CJK (1987) Mycorrhizal and pathological associations of dematiaceous fungi in roots of 7-month old tree seedlings. Can J For Res 17: 884–889CrossRefGoogle Scholar
  80. Xiao G, Berch SM (1992) Ericoid mycorrhizal fungi of Gaultheria shallon. Mycologia 84: 470–471CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • D. J. Read
    • 1
  • S. Kerley
    • 2
  1. 1.Department of Animal and Plant SciencesThe University of SheffieldSheffieldUK
  2. 2.Department of Physiology and AgronomyRothamsted Experiment StationHarpenden, HertsUK

Personalised recommendations