Mycorrhiza pp 373-389 | Cite as

Hydrolytic Enzymes from Arbuscular Mycorrhizae: the Current Status

  • A. Varma


Terrestrial fungi can adopt different life strategies to exploit nutrient sources. They grow as saprotrophs on simple or complex organic substrates, or they can establish a nutritional relationship with higher plants, either as biotrophs or necrotrophs. Mycorrhizal associations are the most important mutualistic biotrophic interactions (Harley 1991). Cellular actions leading to reciprocal morphofunctional integration between symbionts during mycorrhiza establishment are complex. Plant-defence responses, which are normally weakly activated during the symbiotic state, are strongly elicited by arbuscular mycorrhizal (AM) fungi in genetically altered, resistant hosts, suggesting control over defence gene expression during establishment of a successful symbiosis. Modifications are also induced in the fungal symbionts during colonization of host tissues, with changes in wall metabolism and protein expression. They are strictly dependent on nutrition of their host plant, whereas others, like ericoid fungi, can be easily grown in pure culture (Peretto et al. 1993,1995; Varma and Bonfante 1994). Similar to other fungi in the Zygomycotina group (Lewis 1991), AM fungi possess chitin as one of their principal cell-wall components (Bonfante and Grippiolo 1984; Bonfante et al. 1990; Gianinazzi-Pearson et al. 1994). However, their hyphal wall structure and composition do not show a uniform pattern, as they differ between genera (Giovannetti and Gianinazzi-Pearson 1994; Smith and Read 1997) as well as between the different developmental stages of the fungus (Bonfante et al. 1990; Bonfante and Perotto 1995; Bonfante 1997).


Arbuscular Mycorrhizal Fungus Arbuscular Mycor Mycorrhizal Fungus Arbuscular Mycorrhiza Ectomycorrhizal Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arlorio M, Ludwig A, Boller T, Mischiati P, Bonfante P (1991) Effects of chitinase and beta-1,3-glucanase from pea on the growth of saprophytic, pathogenic and mycorrhizal fungi. G Bot Ital 125: 956–958Google Scholar
  2. Aström H, Giovannetti M, Raudaskoski M (1994) Cytoskeletol components in the arbuscular mycorrhizal fungus Glomus mosseae. Mol Plant Microbe Interact 7: 309–312CrossRefGoogle Scholar
  3. Bago B, Chamberland H, Goulet A, Vierheilig H, Lafontaine J-G, Piché Y (1996) Effect of Nikkomycin Z, a chitin-synthase inhibitor, on hyphal growth and cell wall structure of two arbuscular mycorhizal fungi. Protoplasma 192: 80–92CrossRefGoogle Scholar
  4. Bartnicki-Garcia S (1987) The cell wall: a crucial structure in fungal evolution. In: Rayner DM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp 389–403Google Scholar
  5. Blilou I, Martin J, Ocampo JA (1996) Influence of cellulase on the susceptibility of non-host cabbage to colonization by Glomus intraradices. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. Official Publications of the European Communities, Luxembourg, pp 215–217Google Scholar
  6. Bonfante P (1988) The role of the cell wall in mycorrhizal associations. In: Scannerini S, Smith D, Bonfante-Fasolo P, Gianinazzi-Pearson V (eds) NATO ASI series, series H, vol 17. Springer, Berlin Heidelberg New York, pp 219–236Google Scholar
  7. Bonfante P (1997) Gene expression in arbuscular mycorrhizas. In: Bonfante P, Genre A (eds) Cell to cell signals in plant, animal and microbial symbiosis. COST-Action 8.21, Torino, Italy, pp 16–17Google Scholar
  8. Bonfante P, Grippiolo R (1984) Cytochemical and biochemical observations on the cell wall of the spore of Glomus epigaeum. Protoplasma 123: 140–151CrossRefGoogle Scholar
  9. Bonfante P, Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130: 3–21CrossRefGoogle Scholar
  10. Bonfante P, Faccio A, Schubert A (1990) Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungus Glomus versiforme. Mycol Res 94: 157–165CrossRefGoogle Scholar
  11. Bonner J, Varner JE (eds) (1965) Plant biochemistry, 2nd edn. Academic Press, LondonGoogle Scholar
  12. Cabib E (1987) The synthesis and degradation of chitin. Adv Enzymol 59:59–101 Cabib E (1991) Differential inhibition of chitin synthases 1 and 2 from Saccaromyces versiforme. Mycol Res 94: 157–165Google Scholar
  13. Cairney JWG, Burke RM (1996) Plant cell wall-degrading enzymes in ericoid and ectomycorrhizal fungi. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. Official Publications of the European Communities, Luxembourg, pp 218–221Google Scholar
  14. Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Ramussen U, Vad K (1993) Plant chitinases. Plant J 3: 31–40PubMedCrossRefGoogle Scholar
  15. Dey PM, Harborne JB (eds) (1995) Plant biochemistry. Academic Press, London Dix NJ, Webster J (1995) Fungal ecology, Chapman and Hall, London Dumas-Gaudot E, Asselin A, Gianinazzi-Pearson V, Gollotte A, Gianinazzi S (1994)Google Scholar
  16. Chitinase isoforms in roots of various genotypes infected with arbuscular mycorrhizal fungi. Plant Sci 99:27–37Google Scholar
  17. Ebel J, Cosio EG (1994) Elicitors of plant defence responses. Int Rev Cytol 148:1–36 Fry SC (1989) Cellulases, hemicellulases and auxin-stimulated growth: a possible relationship. Physiol Plant 75: 532–536Google Scholar
  18. Fry SC (1995) Polysaccharide-modifying enzymes in the plant cell wall. Annu Rev Plant Physiol Plant Mol Biol 46: 497–520CrossRefGoogle Scholar
  19. Garcia-Garrido JM, Garcia-Romera I, Ocampo JA (1992a) Cellulase activity in lettuce and onion plants colonized by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Soil Biol Biochem 25: 503–504CrossRefGoogle Scholar
  20. Garcia-Garrido JM, Garcia-Romera I, Ocampo JA (1992b) Cellulase production by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae ( Gerd & Gerd ). New Phytol 121: 221–226Google Scholar
  21. Garcia-Garrido JM, Garcia-Romera I, Ocampo JA (1992c) Endoglucanase activity in lettuce plants colonized with the vesicular arbuscular mycorrhizal fungus Glomus fasciculatum. Soil Biol Biochem 24: 955–959CrossRefGoogle Scholar
  22. Garcia-Garrido JM, Garcia-Romera I, Ocampo JA (1996) Purification of an arbuscular mycorrhizal endoglucanase from colonized roots. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. Official Publications of the European Communities, Luxembourg, pp 231–233Google Scholar
  23. Garcia-Romera I, Garcia-Garrido JM, Martinez-Molina E, Ocampo JA (1990) Possible influence of hydrolytic enzymes on vesicular arbuscular mycorrhizal infection of alfalfa. Soil Biol Biochem 22: 149–152CrossRefGoogle Scholar
  24. Garcia-Romera I, Garcia-Garrido JM, Ocampo JA (1991a) Pectolytic enzymes in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. FEMS Microbiol Lett 78: 343–346CrossRefGoogle Scholar
  25. Garcia-Romera I, Garcia-Garrido JM, Ocampo JA (1991b) Pectinase activity in vesicular-arbuscular mycorrhiza during colonization of lettuce. Symbiosis 12: 189198Google Scholar
  26. Garcia-Romera I, Garcia-Garrido JM, Martina-Molina E, Ocampo JA (1991c) Production of pectolytic enzymes in lettuce root colonized with Glomus mosseae. Soil Biol Biochem 23: 597–601CrossRefGoogle Scholar
  27. Garcia-Romera I, Garcia-Romera JM, Ocampo JA (1996) Hydrolytic enzymes in arbuscular mycorrhiza. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. Official Publications from the European Communities, Luxembourg, pp 234–237Google Scholar
  28. Gianinazzi-Pearson V, Lemoine M-C, Gollote A, Morton JB (1994) Localization of beta-1,3-glucans in spore and hyphal walls of fungi in the Glomales. Mycologia 86: 478–485CrossRefGoogle Scholar
  29. Gianinazzi-Pearson V, Gollotte A, Lherm J, Tisserant TB, Franken P, Dumas-Gaudot E, Lemoine MC, Van Tuinen D, Gianinazzi S (1995) Cellular and molecular approaches in the characterization of symbiotic events in functional arbuscular mycorrhizal associations. Can J Bot 73: 526–532CrossRefGoogle Scholar
  30. Gianinazzi-Pearson V, Dumas-Gaudot E, Armelle G, Tahiri A, Gianinazzi S (1996) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133: 45–58CrossRefGoogle Scholar
  31. Giovannetti M, Gianinazzi-Pearson V (1994) Biodiversity in arbuscular mycorrhizal fungi. Mycol Res 98: 705–715CrossRefGoogle Scholar
  32. Giovannetti M, Avio L, Sbrana C, Citeresi AS (1993) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol & Gerd) New Phytol 123: 114–122Google Scholar
  33. Giovannetti M, Sbrana C, Citernesi SA, Avio L (1996) Analysis factors involved in fungal recognition to host-derived signals by arbuscular mycorrhizal fungi. New Phytol 133: 65–72CrossRefGoogle Scholar
  34. Graham LS, Sticklen MB (1994) Plant chitinases. Can J Bot 72: 1057–1083CrossRefGoogle Scholar
  35. Halbrock B, Cuypers B, Douglas C, Fritzmeier KH, Hoffman H, Rohwer F, Scheel D, Schulz W (1986) Biochemical interactions of plants with potentially pathogenic fungi. In: Lugtenberg B (ed) Recognition in microbe-plant symbiotic and pathogenic interactions. Springer, Berlin Heidelberg New York pp 311–323CrossRefGoogle Scholar
  36. Harley JL (1991) Introduction: the state of art. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 21. Academic Press, London, pp 1–24Google Scholar
  37. Harrison MJ, van Burren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378: 626–629PubMedCrossRefGoogle Scholar
  38. Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40: 139–168CrossRefGoogle Scholar
  39. Kirche J, Varma A, Miller D, Mayer F (1994) Carboxymethyl cellulase from Bacillus thermoalkalophilus. Isolation, macromolecular organization and cellular localization. J Gen Microbiol 40: 52–62Google Scholar
  40. Lambais MR, Mehdy C (1993) Suppression of endochitinase, beta-1,3-endoglucanase, and chalcone isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions. Mol Plant Microbe Interact 6: 75–83CrossRefGoogle Scholar
  41. Lanftanco L, Garnero L, Dalpero M, Bonfante P (1995) Chitin synthase homologs in three ectomycorrhizal truffles. FEMS Microbiol Lett 134: 109–114CrossRefGoogle Scholar
  42. Lanfranco L, Garnero L, Bonfante P (1997) Chitin synthase genes from the arbuscular mycorrhizal fungi Glomus versiforme and Gigaspora margarita. In: Bonfante P, Genre L (eds) Gene expression in arbuscular mycorrhizas. COST-Action 8.21, Torino, Italy, pp 18–20Google Scholar
  43. Leake JR, Read DJ (1991) Experiments with ericoid mycorrhiza. In Norris JR, Read DJ, Varma AK (eds). Methods in Microbiology 23, Academic Press, London, pp 435–459Google Scholar
  44. Lewis DH (1991) Fungi and sugars-a suite of interactions. Mycol Res 95:897–904 Manocha MS, Zhonghua Z (1997) Immunocytochemical and cytochemical localization of chitinase and chitin in the infected hosts of a biotrophic mycoparasite, Piptocephalis virginiana. Mycologia 89: 185–194Google Scholar
  45. Mateos PF, Jimenez-Zurdo JI, Chen J, Squartini AS, Haack SK, Martinez-Molina E, Hubbell DH, Dazzo FB (1992) Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar. trifoli. Appl Environ Microbiol 58: 1816–1822PubMedGoogle Scholar
  46. Metzler DE (1977) Biochemistry: the chemical reactions of living cells. Academic Press, London, p 21Google Scholar
  47. Perotto R, Bettini V, Bonfante P (1993) The biology of mycorrhiza in the Ericaceae. I. The isolation of the endophyte and synthesis of mycorrhizas in aseptic cultures. New Phytol 72: 371–379Google Scholar
  48. Perotto S, Peretto R, Schubert A, Varma A, Bonfante P (1995a) Ericoid mycorrhizal fungi: cellular and molecular basis of their interactions with host plant. Can J Bot 73: 557–568CrossRefGoogle Scholar
  49. Perotto S, Bettini V, Favaron F, Alghisi P, Bonfante B (1995b) Polygalacturonase activity and location in arbuscular mycorrhizal roots of Allium poruum. Mycorrhiza 5: 157–164CrossRefGoogle Scholar
  50. Perotto S, Coisson JD, Perugini I, Cometti V, Bonfante P (1997) Production of pectin- degrading enzymes by ericoid mycorrhizal fungi. New Phytol 135: 151–162CrossRefGoogle Scholar
  51. Persad-Chinnery SB, Chinnery LE, Dales RBG (1992) Enhancement in vitro spore germination of Gigaspora rosea by a cellulase preparation. Mycol Res 96: 626628Google Scholar
  52. Pozo MJ, Dumas-Gaudot E, Slezack S, Cordier C, Asselin A, Gianinazzi S, GianinazziPearson V, Azcon-Aguillar C, Barea JM (1996) Induction of new chitinase isoforms in tomato roots during interactions with Glomus mosseae and/or Phytophthora nicotianae var. parasitica. Agronomie 16: 680–697CrossRefGoogle Scholar
  53. Reid JSG (1995) Carbohydrate metabolism: stuctural carbohydrate. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, London, pp 205–235Google Scholar
  54. Rejon-Palomares A, Garcia-Romera I, Ocampo JA (1996a) Xyloglucan-specific endoglucanase activities in onion plants colonized by the arbuscular mycorrhizal fungus. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. Official Publications of the European Communities, Luxembourg, pp 256–259Google Scholar
  55. Rejon-Palomares A, Garcia-Garrido JM, Ocampo JA, Garcia-Romera I (1996b) Presence of xyloglucan-hydrolyzing glucanases (xyloglucanases) in arbuscular mycorrhizal symbiosis. Symbiosis 21: 249–261Google Scholar
  56. Rexova-Benkova L, Markovic 0 (1973) Pectic enzymes. Adv Carbohydr Chem Biochem 33: 323–385CrossRefGoogle Scholar
  57. Sahai AS, Balasubramanian R, Manocha MS (1993) Immunofluorescence study of zygomycetous fungi with two chitin binding probes. Exp Mycol 17: 55–69CrossRefGoogle Scholar
  58. Saito M (1996) Enzyme activities of the internal hyphae of Gigaspora margarita isolated from onion root compared with those of the germinated spores. In: AzconAguilar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. Official Publications of the European Communities, Luxembourg, pp 260–262Google Scholar
  59. Salzer P, Hebe G, Reith A, Zittell-Haid B, Stransky H, Gaschler K, Hager A (1996) Rapid reactions of spruce cells to elicitors released from the ectomycorrhizal fungus Hebeloma crustuliniforme, and inactivation of these elicitors by extracellular spruce cell enzymes. Planta 198: 118–126CrossRefGoogle Scholar
  60. Salzer P, Hübner B, Sirrenberg A, Hager A (1997a) Differential effect of purified spruce chitinases and ß-1,3-glucanases on the activity of elicitors from ectomycorrhizal fungi. Plant Physiol 114: 957–968PubMedCrossRefGoogle Scholar
  61. Salzer P, Münzenberger B, Schwacke R, Kottke I, Hager A (1997b) Signalling in ectomycorrhizal fungus-root interactions. In: Renenberg W, Eschrich W, Ziegler H (eds) Modern tree physiology. SPB Publishing, The Hague pp 339356Google Scholar
  62. Sentandreu R, Mormeneo S, Ruiz-Herrera J (1994) Biogenesis of the fungal cell walls. In: Esser K, Lemke PA (eds) The mycota I. Growth, differentiation and sexuality. Springer, Berlin Heidelberg New York, pp 111–124Google Scholar
  63. Sharp JK, McNeil M, Albersheim P (1984) The primary structures of one elicitor-active and seven elicitors-inactive hexa (beta-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. J Biol Chem 259: 11321–11336PubMedGoogle Scholar
  64. Sirrenberg A, Salzer P, Hager A (1995) Induction of mycorrhiza-like structures and defence reactions in dual cultures of spruce callus and ectomycorrhizal fungi. New Phytol 130: 89–93CrossRefGoogle Scholar
  65. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  66. Spanu P, Boller T, Ludwig A, Wiemken A, Faccio A, Bonfante P (1989) Chitinase in roots of mycorrhizal Allium porum: regulation and localization. Planta 177: 447–455CrossRefGoogle Scholar
  67. Sprecht CA, Liv Y, Robbins PW, Bulawa CE, Lartchouk N, Kenneth R, Winter PJ, Rhodes JC, Dodge CL, Culp DW, Borgias PT (1996) The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis. Fungal Genet Biol 20: 153176Google Scholar
  68. Varma A, Bonfante P (1994) Utilization of cell wall-related carbohydrates by ericoid mycorrhizal endophytes. Symbiosis 16: 301–313Google Scholar
  69. Varma A, Balakrishna K, Rajaram S, Saxena S, König H (1994) Cellulolytic and hemicellulytic microorganisms from termite hills and termite gut. FEMS Microbiol Rev 15: 9–28CrossRefGoogle Scholar
  70. Varma A, Verma S, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen PS, Bütehorn B, Franken P (1998) Piriformospora indica gen. nov. sp. nov., a new root colonising fungus. Mycologia, USA (in press)Google Scholar
  71. Vierheilig H, Alt M, Mohr U, Boller T, Wiemken A (1994) Ethylene biosynthesis and activities of chitinase and beta-1,3-glucanase in the roots of host and non-host plants of vesicular arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J Plant Physiol 143: 337–343CrossRefGoogle Scholar
  72. Vierheilig H, Alt M, Lange J, Gutrella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus moseae. Appl Environ Microbiol 61: 3031–3034PubMedGoogle Scholar
  73. Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) induces a defence response in alfalfa roots. Plant Physiol 104: 683–689PubMedGoogle Scholar
  74. Walton JD (1995) Deconstructing the cell wall. Plant Physiol 104: 1113–1118Google Scholar
  75. Wessels JGH (1994) Developmental regulation of fungal cell wall formation. Annu Rev Phytopatho132: 413–437Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • A. Varma
    • 1
  1. 1.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations