Advertisement

Integrins and Angiogenesis

  • K. S. Riddelle-Spencer
  • D. A. Cheresh
Conference paper
Part of the Ernst Schering Research Foundation Workshop 28 book series (SCHERING FOUND, volume 28)

Abstract

New blood vessel formation in previously avascular tissue occurs by one of two similar but distinct mechanisms: vasculogenesis or angiogenesis. In vasculogenesis, blood vessels develop by organizing angioblast precursor cells into columns that then differentiate into vessels with lumens. Angiogenesis involves the outgrowth or sprouting of new vasculature from larger, pre-existing blood vessels (Risau 1995). The formation of new blood vessels is involved in the normal physiological processes of embryonic development, female reproduction, and wound healing (Folkman 1995). However, unregulated angiogenesis plays a critical role in various pathological mechanisms such as solid tumor formation, metastasis, childhood hemangiomas, and psoriasis, as well as inflammation-related diseases such as rheumatoid arthritis, osteoarthritis, and ulcerative colitis (Folkman 1995). Solid cancerous tumors will not expand beyond a minimal size unless new blood vessels supply oxygen, nutrients, and growth factors to the tumor cells (Folkman 1995). In addition, inappropriate vascularization of ocular tissues can lead to blindness; blood vessel growth into the normally avascular cornea can induce scarring, and proliferative vessels in the retina, as in diabetic retinopathy and macular degeneration, can induce retinal detachment and hemorrhage.

Keywords

Vascular Endothelial Growth Factor Diabetic Retinopathy Blood Vessel Formation Human Microvascular Endothelial Cell Integrin Alpha 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117(4): 1183–1198PubMedGoogle Scholar
  2. Aiello LP, Avery RL, Arrigg PG, et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders (see comments). N Engl J Med 331:1480–1487PubMedCrossRefGoogle Scholar
  3. Bischoff J (1995) Approaches to studying cell adhesion molecules in angio-genesis. Trends Cell Biol 5:69–74PubMedCrossRefGoogle Scholar
  4. Brooks PC, Clark RA, Cheresh DA (1994a) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158):569–571PubMedCrossRefGoogle Scholar
  5. Brooks PC, Montgomery AM, Rosenfeld M, et al (1994b) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7): 1157–1164PubMedCrossRefGoogle Scholar
  6. Brooks PC, Stromblad S, et al (1995) Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin (see comments). J Clin Invest 96(4): 1815–1822PubMedCrossRefGoogle Scholar
  7. Brooks PC, Stromblad S, Sanders LC, et al (1996) Localization of matrix met-alloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85(5):683–693PubMedCrossRefGoogle Scholar
  8. Brooks PC, Silletti S, Schalscha TL von, et al (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92(3):391–400PubMedCrossRefGoogle Scholar
  9. Cheng YF, Kramer RH (1989) Human microvascular endothelial cells express integrin-related complexes that mediate adhesion to the extracellular matrix. J Cell Physiol 139(2):275–286PubMedCrossRefGoogle Scholar
  10. Cheresh DA (1987) Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci USA 84(18):6471–6475PubMedCrossRefGoogle Scholar
  11. Cheresh DA (1993) Integrins: structure, function, and biological properties. Adv Mol Cell Biol 6:225–252CrossRefGoogle Scholar
  12. Cheresh DA, Berliner SA, Vicente V, Ruggeri ZM (1989) Recognition of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells. Cell 58(5):945–953PubMedCrossRefGoogle Scholar
  13. Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268(5208):233–239PubMedCrossRefGoogle Scholar
  14. Clark RA, DellaPelle P, Manseau E, et al (1982) Blood vessel fibronectin increases in conjunction with endothelial cell proliferation and capillary ingrowth during wound healing. J Invest Dermatol 79(5):269–276PubMedCrossRefGoogle Scholar
  15. Coller BS, Cheresh DA, Asch E, Seligsohn U (1991) Platelet vitronectin receptor expression differentiates Iraqi-Jewish from Arab patients with Glan-zmann thrombasthenia in Israel. Blood 77(l):75–83PubMedGoogle Scholar
  16. Davis GE (1992) Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Commun 182(3): 1025–1031PubMedCrossRefGoogle Scholar
  17. Djaffar I, Rosa JP (1993) A second case of variant of Glanzmann’s thrombasthenia due to substitution of platelet GPIIIa (integrin beta 3) Arg214 by Tip. Hum Mol Genet 2(12):2179–2180PubMedCrossRefGoogle Scholar
  18. Drake CJ, Cheresh DA, Little CD (1995) An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 108(7):2655–2661PubMedGoogle Scholar
  19. Eliceiri BP, Klemke R, Stromblad S, Cheresh DA (1998) Integrin alpha v beta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 140(5): 1255–1263PubMedCrossRefGoogle Scholar
  20. Enenstein J, Kramer RH (1994) Confocal microscopic analysis of integrin expression on the microvasculature and its sprouts in the neonatal foreskin. J Invest Dermatol 103(3):381–386PubMedCrossRefGoogle Scholar
  21. Enenstein J, Waleh NS, Kramer RH (1992) Basic FGF and TGF-beta differentially modulate integrin expression of human microvascular endothelial cells. Exp Cell Res 203(2):499–503PubMedCrossRefGoogle Scholar
  22. Foda HD, George S, et al (1996) Activation of human umbilical vein endothelial cell progelatinase A by phorbol myristate acetate: a protein kinase C-de-pendent mechanism involving a membrane-type matrix metalloproteinase. Lab Invest 74(2):538–545PubMedGoogle Scholar
  23. Folkman J(1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31PubMedCrossRefGoogle Scholar
  24. Friedlander, M, Brooks PC, et al (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270(5241): 1500–1502PubMedCrossRefGoogle Scholar
  25. Hammes HP, Brownlee M, Jonczyk A, et al (1996) Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nat Med 2(5):529–533PubMedCrossRefGoogle Scholar
  26. Hanemaaijer R, Koolwijk P, le Clercq L, et al (1993) Regulation of matrix met-alloproteinase expression in human vein and microvascular endothelial cells. Effects of tumour necrosis factor alpha, interleukin 1 and phorbol ester. Biochem J 296(3): 803–809PubMedGoogle Scholar
  27. Haralabopoulos GC, Grant DS, Kleinman HK, et al (1994) Inhibitors of basement membrane collagen synthesis prevent endothelial cell alignment in matrigel in vitro and angiogenesis in vivo. Lab Invest 71(4):575–582PubMedGoogle Scholar
  28. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1): 11–25PubMedCrossRefGoogle Scholar
  29. Ingber D (1991) Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J Cell Biochem 47(3):236–241PubMedCrossRefGoogle Scholar
  30. Jiang B, Liou GI, Behzadian MA, et al (1994) Astrocytes modulate retinal vas-culogenesis: effects on fibronectin expression. J Cell Sci 107(9):2499–2508PubMedGoogle Scholar
  31. Johnson MD, Kim HR, Chesler L, et al (1994) Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J Cell Physiol 160(1): 194–202PubMedCrossRefGoogle Scholar
  32. Kubota Y, Kleinman HK, Martin GR, et al (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107(4): 1589–1598PubMedCrossRefGoogle Scholar
  33. Leavesley DI, Ferguson GD, Wayner EA, Cheresh DA (1992) Requirement of the integrin beta 3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J Cell Biol 117(5): 1101–1107PubMedCrossRefGoogle Scholar
  34. Leavesley DI, Schwartz MA, Rosenfeld M, Cheresh DA (1993) Integrin beta 1- and beta 3-mediated endothelial cell migration is triggered through distinct signaling mechanisms. J Cell Biol 121(1): 163–170PubMedCrossRefGoogle Scholar
  35. Lin CQ, Bissell MJ (1993) Multi-faceted regulation of cell differentiation by extracellular matrix (see comments). Faseb J 7(9):737–743PubMedGoogle Scholar
  36. Lohler J, Timpl R, Jaenisch R (1984) Embryonic lethal mutation in mouse collagen I gene causes rupture of blood vessels and is associated with erythropoietic and mesenchymal cell death. Cell 38(2):597–607PubMedCrossRefGoogle Scholar
  37. Meredith JE Jr, Fazeli B, Schwartz MA (1993) The extracellular matrix as a cell survival factor. Mol Biol Cell 4(9):953–961PubMedGoogle Scholar
  38. Miller JW, Adamis AP, Shima DT, et al (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 145(3):574–584PubMedGoogle Scholar
  39. Montgomery AM, Reisfeld RA, Cheresh DA (1994) Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci USA 91(19):8856–8860PubMedCrossRefGoogle Scholar
  40. Moses MA, Sudhalter J, Langer R (1990) Identification of an inhibitor of neovascularization from cartilage. Science 248(4961): 1408–1410PubMedCrossRefGoogle Scholar
  41. Nicosia RF, Madri JA (1987) The microvascular extracellular matrix. Developmental changes during angiogenesis in the aortic ring-plasma clot model. Am J Pathol 128(1):78–90PubMedGoogle Scholar
  42. Pfaff M, Aumailley M, Specks U, et al (1993) Integrin and Arg-Gly-Asp dependence of cell adhesion to the native and unfolded triple helix of collagen type VI. Exp Cell Res 206(1): 167–176PubMedCrossRefGoogle Scholar
  43. Re F, Zanetti A, Sironi N, et al (1994) Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J Cell Biol 127(2):537–546PubMedCrossRefGoogle Scholar
  44. Risau W(1995) Differentiation of endothelium. FASEB J 9(10):926–933PubMedGoogle Scholar
  45. Risau W, Lemmon V (1988) Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125(2):441–450PubMedCrossRefGoogle Scholar
  46. Sepp NT, Li L-J, Lee KH, Brown EJ, Caughman SWW, Lawley TJ, Swerlick RA (1994) Basic fibroblast growth factor increases expression of the αϛβ3 complex on human microvessel endothelial cells. J Invest Dermatol 103:295–299PubMedCrossRefGoogle Scholar
  47. Stromblad S, Cheresh DA (1996) Cell adhesion and angiogenesis. Trends Cell Biol 6:462–468PubMedCrossRefGoogle Scholar
  48. Stromblad S, Becker JC, Yebra M, et al (1996) Suppression of p53 activity and p21WAFl/CIPl expression by vascular cell integrin alphaVbeta3 during angiogenesis. J Clin Invest 98(2):426–433PubMedCrossRefGoogle Scholar
  49. Strongin AY, Manner BL, Grant GA, Goldberg GI (1993) Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J Biol Chem 268(19): 14033–14039PubMedGoogle Scholar
  50. Takigawa M, Nishida Y, Suzuki F, et al (1990) Induction of angiogenesis in chick yolk-sac membrane by poly amines and its inhibition by tissue inhibitors of metalloproteinases (TIMP and TIMP-2). Biochem Biophys Res Commun 171(3):1264–1271PubMedCrossRefGoogle Scholar
  51. Watt FM, Hodivala KJ (1994) Cell adhesion. Fibronectin and integrin knockouts come unstuck. Curr Biol 4(3):270–272PubMedCrossRefGoogle Scholar
  52. Weidner N (1995) Intratumor microvessel density as a prognostic factor in cancer (comment). Am J Pathol 147(1):9–19PubMedGoogle Scholar
  53. White E (1996) Life, death, and the pursuit of apoptosis. Genes Dev 10(1):1–15PubMedCrossRefGoogle Scholar
  54. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331PubMedCrossRefGoogle Scholar
  55. Yamada KM, Miyamoto S (1995) Integrin transmembrane signaling and cy- toskeletal control. Curr Opin Cell Biol 7(5):681–689PubMedCrossRefGoogle Scholar
  56. Zucker S, Conner C, et al (1995) Thrombin induces the activation of progelatinase A in vascular endothelial cells. Physiologic regulation of angiogenesis. J Biol Chem 270(40):23730–23738PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • K. S. Riddelle-Spencer
  • D. A. Cheresh

There are no affiliations available

Personalised recommendations