Mercury Contamination from New World Gold and Silver Mine Tailings

  • L. D. Lacerda
  • W. Salomons
Part of the Environmental Science book series (ESE)


The input of mercury by industrial point sources into the environment has decreased drastically in both developed and developing countries. The remaining issues, in particular in temperate climates, are the accumulated levels of mercury in hot spots like industrial sites and contaminated soils and sediments. The appropriate technology for cleanup of hot spots is, in principle, available (see the various chapters in this Vol.). Furthermore, new technologies are available that completely exclude or limit the use of mercury.


Gold Mining Mercury Concentration Mining Site Mine Tailing Freshwater Snail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan R (1995) Impact of mining activities on the terrestrial and aquatic environment with emphasis on mitigation and remedial measures. In: Salomons W, Förstner U (eds) Heavy metals: problems and solutions. Springer, Berlin Heidelberg New York, pp 119–140CrossRefGoogle Scholar
  2. Andrade JC, Bueno MIMS, Soares PV, Choudhuri A (1988) The fate of mercury released from prospecting areas ( Garimpos) near Guarinus and Pilar, Goias (Brazil). An Acad Bras Cinc 60: 293–303Google Scholar
  3. Archer I, Marshman NA, Salomons W (1988) Development of a revegetation program for copper and sulphide-bearing mine wastes in humid tropics. In: Salomons W, Förstner U (eds) Chemistry and biology of solid wastes. Springer, Berlin Heidelberg New York, pp 166–184Google Scholar
  4. Aula I, Braunsweiller H, Leino T, Malin I, Porvari P, Hatanaka T, Lodenius M, Juras A (1994) Levels of mercury in the Tucuruí reservoir and its surrounding area in Para., Brazil. In: Watras CJ, Huckabee JW (eds) Mercury pollution: integration and synthesis. Lewis Publ, Boca Raton, pp 21–40Google Scholar
  5. Baeyens W, Leermakers M, Dedeuwaerder H, Larsens P (1991) Modelization of the mercury fluxes at the air sea interface. Water Air Soil Pollut 56: 731–744CrossRefGoogle Scholar
  6. Benzing DH (1981) Mineral nutrition of epiphytes: an appraisal of adaptive features. Selbyana 5: 219–223Google Scholar
  7. Browne CL, Fang SC (1978) Uptake of mercury vapour by wheat: an assimilation model. Plant Physiol 61: 430–433CrossRefGoogle Scholar
  8. Bycroft BM, Coller BAW, Deacon GB, Coleman DJ, Lake PS (1982) Mercury contamination of the Lerderderg River, Victoria, Australia, from an abandoned gold field. Environ Pollut Ser A 28: 135–147Google Scholar
  9. Callaham JE, Miller JW, Craig JR (1994) Mercury pollution as a result of gold extraction in North Carolina, USA. Appl Geochem 9: 235–241Google Scholar
  10. CETEM (1989) Relatório Anual do Projeto Poconé. Centr Tecnol Mineral, Rio de Janeiro, 287 ppGoogle Scholar
  11. CETEM (1992) Diagnóstico preliminar dos impactos ambientais gerados por garimpos de ouro em Alta Floresta/MT: Estudo de caso Centro de Tecnologia Mineral, Rio de Janeiro, p 190Google Scholar
  12. Ching L, Ilongxiao T (1985) Chemical studies of aquatic pollution by heavy metals in China. In: Irgolic KJ, Martell AE (eds) Proc Workshop Environm Inorganic Chem, San Miniato, Florida, pp 359–371Google Scholar
  13. Crowder A, Cyr L (1991) Iron oxide plaques on wetland roots. Trends Soil Sci 1: 315–329Google Scholar
  14. Ernst WHO (1988) Response of plants and vegetation to mine tailings and dredge materials. In: Salomons W, Forstner U (eds) Chemistry and biology of solid wastes. Springer, Berlin Heidelberg New York, 305 ppGoogle Scholar
  15. Farid Lii (org) (1992) Diagnóstico preliminar dos impactos ambientais gerados por garimpo de ouro em Alta Floresta, MT. Ser Tecnol Ambiental CETEM 2: 1–190Google Scholar
  16. Ferrara F, Petrodino A, Maserti E, Seritti A, Barghigiani C (1982) The biogeochemical cycle of mercury in the Mediterranean Part II. Mercury in the atmosphere, aerosol and in rain of a northern Tyrrhenian area. Environ Technol Lett 3: 449–456Google Scholar
  17. Ferrara R, Maserti BE (1994) Mercury degassing rate in some Mediterranean areas. In: Proc Int Conf Mercury as a Global Pollutant. Whistler BC, Abstract Section 8BGoogle Scholar
  18. Fisher JR (1977) Silver mines and silver miners in colonial Peru, 1776–1824. Centre for Latin american Studies, Univ Liverpool, LiverpoolGoogle Scholar
  19. Fitzgerald WF, Mason RP, Vandal GM (i991) Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions. Water Air Soil Pollut 56: 745–767Google Scholar
  20. Fuge R, Pearce NIG, Perkins WT (1992) Mercury and gold mining. Nature 357: 369CrossRefGoogle Scholar
  21. Gambrell RP (1994) Trace and toxic metals in wetlands-a review. J Environ Qual 23: 883–891CrossRefGoogle Scholar
  22. Gill GA, Bruland KW (1990) Mercury speciation in surface freshwater systems in California and other areas. Environ Sci Technol 24: 1392–1400CrossRefGoogle Scholar
  23. Gustin MS, Leonard GETT (1994) Mercury evasion from contaminated landscape elements, Carson River Superfund Site, Nevada. In: Proc Int Conf Mercury as a Global Pollutant. Whistler BC, Section III, AbstractGoogle Scholar
  24. Hacon S (1966) Exposicao ao mercurio da populacao humana da Alta Floresta, Mato Grosso. PhD) Thesis, Universidade Federal Fluminense, Niteroi, p 134Google Scholar
  25. Hacon S, Artaxo P, Gerab F, Yamasoe MA, Calixto RC, Conti LF (1995) Atmospheric mercury and trace elements in the region of Alta Floresta in the Amazon Basin. Water Air Soil Pollut 80: 273–283CrossRefGoogle Scholar
  26. Fluckabee JW, Elwood JW, Hildebrand SG (1979) Accumulation of mercury by freshwater biota, In: Nriagu JO (ed) The biogeochemistry of mercury in the environment. Elsevier/North Holland, Amsterdam, pp 277–307Google Scholar
  27. James LP (1994) The mercury tromol mill: an innovative gold recovery technique and a possible environmental concern. J Geochem Explor 50493–500Google Scholar
  28. Jordan CF, Colley FB, Hall J, Hall J (1980) Nutrient scavenging of rainfall by the canopy of an Amazonian rain forest. Biotropica 12: 61–66CrossRefGoogle Scholar
  29. Kelly M (1988) Mining and the freshwater environment. Elsevier London, 231 ppGoogle Scholar
  30. Kim K-H, Lindberg S, Hanson PJ, Meyers TP, Owens J (1993) Application of micrometeorological methods to measurements of mercury emissions over contaminated soils. Proc Int Conf Heavy Metals in the Environment, Toronto 1: 328–331Google Scholar
  31. Kothny E (1974) The three-phase equilibrium of mercury in nature. In: Gould RT (ed) Trace elements in the environment. Adv Chem Ser 123: 48–91Google Scholar
  32. Kozlowiski TT (1984) Plant responses to flooding of soil. BioScience 34: 162–167Google Scholar
  33. Lacerda LD, Marins RV (1997) Antropogenic mercury emissions to the atmosphere in Brazil: the impact of gold mining. J Geochem Explor 58: 223–229CrossRefGoogle Scholar
  34. Lacerda LD, Salomons W (1998) Mercury from gold and silver mining. A chemical time bomb. Springer, Berlin Heidelberg New York, 146 ppCrossRefGoogle Scholar
  35. Lacerda LD, DePaula FC, Ovalle ARC, Pfeiffer WC, Malm O (1990) Trace metals in fluvial sediments of the Madeira River watershed, Amazon, Brazil. Sci Total Environ 97 /98: 525–530CrossRefGoogle Scholar
  36. Lacerda LD, Marins RV, Souza CMM, Rodrigues S, Pfeiffer WC, Bastos WR (1991a) Mercury dispersal in water, sediments and aquatic biota of a gold mining tailings drainage in Pocone, Brazil. Water Air Soil Pollut 55: 283–294Google Scholar
  37. Lacerda LD, Salomons W, Pfeiffer WC, Bastos WR (1991) Mercury distribution in sediment profiles of remote high Pantanal lakes, central Brasil. Biogeochemistry 14: 71–77Google Scholar
  38. Lacerda LD, Malm O, Guimarâes JRD, Salomons W (1995) Mercury and the new gold rush in the south. In: Salomons W, Stigliani W (eds) Biogeodynamics of pollutants. Springer Berlin Heidelberg New York, pp 213–245Google Scholar
  39. Lane PA, Crowell MJ, Graves MC (1988) Heavy metal removal from gold mining and tailings effluents using indigenous aquatic macrophytes (Phase I). CNMET Spec Publ SP88–23, pp 3–37Google Scholar
  40. Lechler PJ (1993) Mercury vapor sampling at the Carson river superfund site. Int Conf Heavy Metal in the Environment, Toronto 1: 377–380Google Scholar
  41. Lechler PJ, Miller, JR (1993) The dispersion of mercury, gold, and silver from contaminated mill tailings at the Carson River mercury superfund site, west-central Nevada, USA. In: Abrâo JJ, Wasserman JC, Silva-Filho EV (eds) Proc lnt Symp Perspectives for Environmental Geochemistry in Tropical Countries, Rio de Janeiro, 1993, pp 433–436Google Scholar
  42. Malias J, Benedicto N (1986) Mercury and gold mining in the Brazilian Amazon. Ambio 15: 248–249Google Scholar
  43. Malm O, Pfeiffer WC, Souza CMM (1991) Main pathways of mercury in the Madeira River area, Rondonia, Brazil. Proc Int Conf Heavy Metals Environment, Edinburgh 1: 515–518Google Scholar
  44. Miller JR, Lechler PJ, Desileta M, Rowland J, Hsu LC, Price JG (1993) Quantity and distribution of mining related trace metals in Lohantan Reservoir, west central Nevada. Proc Int Conf Heavy Metal in the Environment, Toronto 2:251–254Google Scholar
  45. Mohlenberg F, Riisgard HU (1988) Partitioning of inorganic and organic mercury in cockles Cardium edule (L) and C. glaucum (Bruguière) from a chronically polluted area: influence of size and age. Environ Pollut 55: 137–148CrossRefGoogle Scholar
  46. Mora SJ, Patterson JE, Bibby DM (1993) Baseline atmospheric mercury studies at Ross Island, Antartica. Antarct Sci 5: 323–326Google Scholar
  47. Mudroch A, Clair TA (1986) Transport of arsenic and mercury from gold mining activities through an aquatic system. Sci Total Environ 57: 205–216CrossRefGoogle Scholar
  48. Nadkarni NH (1984) Epiphyte biomass and nutrient capita of a neotropical elfin forest. Biotropica 16: 249–256CrossRefGoogle Scholar
  49. Nelson H, Larsen BR, Jenne EA, Sorg DH (1977) Mercury dispersal from lode sources in the Kuskokwim River drainage, Alaska. Science 198: 820–824Google Scholar
  50. Nriagu JO (1994) Mercury pollution from past mining of silver and gold in the Americas. Sci Total Environ 149: 167–181CrossRefGoogle Scholar
  51. Nriagu JO, Pfeiffer WC, Maln1 O, Souza CMM, Mierle G (1992) Mercury pollution in Brazil. Nature 356–389Google Scholar
  52. Pfeiffer WC, Lacerda LD (1988) Mercury inputs into the Amazon Region, Brazil. Environ Technol Lett 9325–330Google Scholar
  53. Prokopovich NP (1984) Occurrence of mercury in dredge tailings near Falosm South Canal, California. Bull Assoc Eng Geol 21: 531–543Google Scholar
  54. Ramos JEF, Costa MQ (1990) Distribuiçäo de mercúrio em dois garimpos do Estado do Para. In: Hacon S, Lacerda LD, Pfeiffer WC, Carvalho D (eds) Riscos e consequncias do use do mercúrio. UFRJ, Rio de Janeiro, pp 70–79Google Scholar
  55. Rasmussen PE (1994) Current methods of estimating atmospheric mercury fluxes in remote areas. Environ Sci Technol 28: 2233–2241CrossRefGoogle Scholar
  56. Schroeder WH, Lindqvist O, Munthe J, Xiao Z (1992) Volatilization of mercury from lake surfaces. Sci Total Environ 125: 47–66CrossRefGoogle Scholar
  57. Siegel SM (1973) Metal ions in biological systems. Marcel Dekker, New YorkGoogle Scholar
  58. Siegel SM, Puerer N, Speitel T (1974) Release of volatile mercury from vascular plants. Physiol Plant. 34: 174–182CrossRefGoogle Scholar
  59. Siegel SM, Siegel B, Lipp P, Kruckberg A, Towers GHN, Warren H (1985) Indicator plant-soil mercury patterns in a mercury-rich mining area of British Columbia. Water Air Soil Pollut 25: 73–79CrossRefGoogle Scholar
  60. Siegel SM, Siegel BZ, Barghigiani C, Aratani K, Penny P, Penny D (1987) A contribution of the environmental biology of mercury accumulation in plants. Water Air Soil Pollut 33: 65–72CrossRefGoogle Scholar
  61. Tayrayev TT (1991) Man-made dispersion train of gold and mercury in Golet-Taiga terrain. Dokl Akad Nauk SSR 317: 719–722Google Scholar
  62. Thornton I, Cleary D, Worthington S (1992) Mercury contamination in the Brazilian Amazon. A cooperative research study conducted by GEDEBAM. Brazil e Sol 3 (Switzerland and Luxembourg), 45 PGoogle Scholar
  63. Tümpling WV, Wilken RD, Einax J (1993) Pathways and contaminations of mercury in the Pantanal area, Brazil. In: Abräo JJ, Wasserman JC, Silva-Filho EV (eds) Proc Int Symp Perspectives for Environmental Geochemistry in Tropical Countries, pp 403–406Google Scholar
  64. Tümpling WV, Wilken RD, Einax J (1995) Mercury contamination in the northern Pantanal region, Mato Grosso, Brazil. J Geochem Explor 52: 127–134Google Scholar
  65. Vandal GM, Fitzgerald WF, Boutron CF, Candelone JP (1993) Variations in mercury deposition to Antartica over the past 34,000 years. Nature 362: 621–623CrossRefGoogle Scholar
  66. Michaelis H (1988) Integrated biological systems for effluent treatment from mine and mill tailings. In: Salomons W; Förstner U (eds) Chemistry and biology of solid wastes. Springer, Berlin Heidelberg New York, pp 99–113Google Scholar
  67. Yshuan YS (1994) Mercury contamination in China. In: Evaluation of the role and distribution of mercury on ecosystems with special emphasis on tropical regions. SCOPE, Rio de Janeiro (unpublished )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • L. D. Lacerda
  • W. Salomons

There are no affiliations available

Personalised recommendations