Skip to main content

Hydrodynamic Limit of Asymmetric Attractive Processes

  • Chapter
Scaling Limits of Interacting Particle Systems

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 320))

  • 2002 Accesses

Abstract

We examine in this chapter an alternative method to prove the hydrodynamic behavior of asymmetric interacting particle systems. This approach has the advantage over the one presented in Chapter 6 that it does not require the solution of the hydrodynamic equation to be smooth. On the other hand its main inconvenience is that it assumes the process to be attractive to permit the use of coupling arguments and the initial state to be a product measure. To illustrate this approach we consider an asymmetric attractive zero range process on the discrete d—dimensional torus T d N . The generator of this Markov process, denoted by L N , is given by

$$\left( {{L_N}f} \right)\left( \eta \right)\, = \,\sum\limits_{\begin{array}{*{20}{c}}{x \in {\text{T}}_N^d} \\{y \in {\mathbb{Z}^d}}\end{array}} {p\left( y \right)g\left( {\eta \left( x \right)} \right)\left[ {f\left( {{\eta ^{x,x + y}}} \right)\, - \,f\left( \eta \right)} \right]\,,} $$
(0.1)

where p(·) is a finite range irreducible transition probability on ℤd. Irreducible means here that for every z in ℤd, there exists a positive integer m and a sequence 0 = x 0, x 1,…, x m , = z such that p(x i+1x i )+p(x i x i+1) > 0 for 0 ≤ im − 1. Throughout this chapter we assume the process to be attractive. We have seen in Chapter 2 that this hypothesis corresponds to assume that the rate at which a particle leaves a site is a non decreasing function of the total number of particles at that site:

(H) g(·) is a non decreasing function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Comments and References

  • Rost, H. (1981): Nonequilibrium behavior of many particle systems: density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58, 41–53

    Article  MathSciNet  MATH  Google Scholar 

  • Andjel, E.D., Kipnis, C. (1984): Derivation of the hydrodynamical equation for the zero-range interaction process. Ann. Probab. 12, 325–334

    Article  MathSciNet  MATH  Google Scholar 

  • Benassi, A., Fouque, J.P. (1987): Hydrodynamical limit for the asymmetric exclusion process. Ann. Probab. 15, 546–560

    Article  MathSciNet  MATH  Google Scholar 

  • Benassi, A., Fouque, J.P. (1988): Hydrodynamical limit for the asymmetric zero-range process. Ann. Inst. H. Poincaré, Probabilités 24, 189–200

    MathSciNet  MATH  Google Scholar 

  • Andjel, E.D., Vares, M.E. (1987): Hydrodynamic equations for attractive particle systems on Z. J. Stat. Phys. 47, 265–288

    Article  MathSciNet  MATH  Google Scholar 

  • Landim, C. (1991a): Hydrodynamical equations for attractive particle systems on Z d. Ann. Probab. 19, 1537–1558

    Article  MathSciNet  MATH  Google Scholar 

  • Landim, C. (1991b): Hydrodynamical limit for asymmetric attractive particle systems on Z d. Ann. Inst. H. Poincaré, Probabilités 27, 559–581

    MathSciNet  MATH  Google Scholar 

  • Rezakhanlou, F. (1991): Hydrodynamic limit for attractive particle systems on Zd. Commun. Math. Phys. 140, 417–448

    Article  MathSciNet  MATH  Google Scholar 

  • Bahadoran, C. (1996a): Hydrodynamical limit for non-homogeneous zero range processes, preprint

    Google Scholar 

  • Benassi, A., Fouque, J.P., Saada, E., Vares, M.E. (1991): Asymmetric attractive particle systems on Z: hydrodynamical limit for monotone initial profiles. J. Stat. Phys. 63, 719–735

    Article  MathSciNet  Google Scholar 

  • Fouque, J.P., Saada, E. (1994): Totally asymmetric attractive particle systems on Z: hydrodynamical limit for general initial profiles. Stoch. Proc. Appl. 51, 9–23

    Article  MathSciNet  MATH  Google Scholar 

  • Landim, C. (1993): Conservation of local equilibrium for attractive particle systems on Z d. Ann. Probab. 21, 1782–1808

    Article  MathSciNet  MATH  Google Scholar 

  • Yau, H.T. (1991): Relative entropy and hydrodynamics of Ginzburg—Landau models. Lett. Math. Phys. 22, 63–80

    Article  MathSciNet  MATH  Google Scholar 

  • Venkatraman, R. (1994): Hydrodynamic limit of the asymmetric simple exclusion process with deterministic initial data and the Hammersley process on S(1). Ph.D. ‘Thesis, Courant Institute, New York University.

    Google Scholar 

  • Seppäläinen, T. (1996b): Hydrodynamic scaling, convex duality and asymptotic shapes of growth models, preprint

    Google Scholar 

  • Bahadoran, C. (1997): Hydrodynamics of asymmetric misanthrope processes with general initial configurations, preprint

    Google Scholar 

  • Landim, C. (1996): Hydrodynamical limit for space inhomogenuous one dimensional totally asymmetric zero range processes. Ann. Probab. 24, 599–638

    Article  MathSciNet  MATH  Google Scholar 

  • Bahadoran, C. (1996b): Hydrodynamical limit for spatially heterogeneous simple exclusion processes, preprint

    Google Scholar 

  • Covert, P., Rezakhanlou, F. (1996): Hydrodynamic limit for particle systems with non—constant speed parameter. J. Stat. Phys. 88, 383–426

    Article  MathSciNet  Google Scholar 

  • Rezakhanlou, F. (1997): Equilibrium fluctuations for the discrete Boltzmann equation. To appear in Duke Math. J.

    Google Scholar 

  • Aldous, D.J., Diaconis, P. (1995): Hammersley’s interacting particle process and longest increasing subsequences. Probab. Th. Rel. Fields 103, 199–213

    Article  MathSciNet  MATH  Google Scholar 

  • Seppäläinen, T. (1996a): A microscopic model for the Burgers equation and longest increasing subsequences. Electronic J. Probab. 1, 1–51

    MATH  Google Scholar 

  • De Masi, A., Presutti, E., Scacciatelli, E. (1989): The weakly asymmetric simple exclusion process. Ann. Inst. H. Poincaré, Probabilités 25, 1–38

    MATH  Google Scholar 

  • Gärtner, J. (1988): Convergence towards Burger’s equation and propagation of chaos for weakly asymmetric exclusion processes. Stoch. Proc. Appl. 27, 233–260

    Article  MATH  Google Scholar 

  • Dittrich, P., Gärtner, J. (1991): A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr. 151, 75–93

    Article  MathSciNet  MATH  Google Scholar 

  • Fritz, J., Maes, C. (1988): Derivation of a hydrodynamic equation for Ginzburg—Landau models in an external field. J. Stat. Phys. 53, 1179–1206

    Article  MathSciNet  MATH  Google Scholar 

  • Dittrich, P. (1990): Travelling waves and long-time behaviour of the weakly asymmetric exclusion process. Probab. Th. Rel. Fields 86, 443–455

    Article  MathSciNet  MATH  Google Scholar 

  • Dittrich, P. (1992): Long-time behaviour of the weakly asymmetric exclusion process and the Burgers equation without viscosity. Math. Nachr. 155, 279–287

    Article  MathSciNet  MATH  Google Scholar 

  • Harris, T.E. (1967): Random measures and motions of point processes. Z. Wahrsch. Verw. Gebiete 9, 36–58

    Article  Google Scholar 

  • Port, S.C., Stone, C.J. (1973): Infinite particle systems. Trans. Amer. Math. Soc. 178, 307–340

    Article  MathSciNet  MATH  Google Scholar 

  • Rezakhanlou, F. (1994a): Evolution of tagged particles in non-reversible particle systems. Commun. Math. Phys. 165, 1–32

    Article  MathSciNet  MATH  Google Scholar 

  • Filippov, A.F. (1960): Differential equations with discontinuous right—hand side. Mat. Sb. (N.S.) 51 (93), 99–128

    MathSciNet  Google Scholar 

  • Cocozza, C. (1985): Processus des misanthropes. Z. Wahrsch. Verw. Gebiete 70, 509–523

    Article  MathSciNet  MATH  Google Scholar 

  • Spitzer, F. (1970): Interaction of Markov processes. Adv. Math. 5, 246–290.

    Article  MathSciNet  MATH  Google Scholar 

  • Kipnis, C. (1986): Central limit theorems for infinite series of queues and applications to simple exclusion. Ann. Probab. 14, 397–408

    Article  MathSciNet  MATH  Google Scholar 

  • Saada, E. (1987a): A limit theorem for the position of a tagged particle in a simple exclusion process. Ann. Probab. 15, 375–381

    Article  MathSciNet  MATH  Google Scholar 

  • Saada, E. (1987b): Processus de zero-range avec particule marquée. Ann. Inst. H. Poincaré, Probabilités 26, 5–18

    MathSciNet  Google Scholar 

  • Kipnis, C. (1985): Recent results on the movement of a tagged particle in simple exclusion. Contemp. Math. 41, 259–265

    Article  MathSciNet  Google Scholar 

  • Ferrari, P.A. (1996): Limit theorems for tagged particles. Markov Proc. Rel. Fields 2, 17–40

    MATH  Google Scholar 

  • Ferrari, P.A., Fontes, L.R.G. (1996): Poissonian approximation for the tagged particle in asymmetric simple exclusion. J. Appl. Prob. 33, 411–419

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrari, P.A., Fontes, L.R.G. (1994a): Current fluctuations for the asymmetric simple exclusion process. Ann. Probab. 22, 820–832

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrari, P.A. (1992): Shock fluctuations in asymmetric simple exclusion. Probab. Th. Rel. Fields 91, 81–101

    Article  MATH  Google Scholar 

  • De Masi, A., Ferrari, P. A. (1985): Self-diffusion in one-dimensional lattice gases in the presence of an external field, J. Stat. Phys. 38, 603–613

    Article  MATH  Google Scholar 

  • Gärtner, J., Presutti, E. (1990): Shock fluctuations in a particle system. Ann. Inst. H. Poincaré, Physique Théorique 53, 1–14

    MATH  Google Scholar 

  • Wick, W.D. (1985): A dynamical phase transition in an infinite particle system. J. Stat. Phys. 38, 1015–1025

    Article  MathSciNet  MATH  Google Scholar 

  • De Masi, A., Ferrari, P. A., Goldstein, S., Wick, W. D. (1989): An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55, 787–855

    Article  MATH  Google Scholar 

  • Kipnis, C., Léonard, C. (1995): Grandes Déviations pour un système hydrodynamique asymétrique de particules indépendantes. Ann. Inst. H. Poincaré, Probabilités 31, 223248

    Google Scholar 

  • Ferrari, P.A., Fontes, L.R.G. (1994b): Shock fluctuations in the asymmetric simple exclusion process. Probab. Th. Rel. Fields 99, 305–319

    Article  MathSciNet  MATH  Google Scholar 

  • Benassi, A., Fouque, J.P. (1991): Fluctuation field for the asymmetric simple exclusion process. In U. Hornung, P. Kotelenez and G. Papanicolaou, editors, Random Partial Differential Equations, volume 102 of International Series of Numerical Mathematics, pages 33–43, Birhäuser, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kipnis, C., Landim, C. (1999). Hydrodynamic Limit of Asymmetric Attractive Processes. In: Scaling Limits of Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03752-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03752-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08444-7

  • Online ISBN: 978-3-662-03752-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics