Skip to main content

Abstract

The decomposition of raw materials during glass melting yields large quantities of gases [6.1]. Most of these gases, especially water vapour, sulphur dioxide, carbon dioxide, and air, are released into the furnace atmosphere, while a smaller portion either remains dissolved within the glass melt or forms bubbles. But this not the only bubble-forming mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Krämer: “Gasprofilmessungen zur Bestimmung der Gasabgabe beim Glasschmelzprozeß”, Glastechn. Ber. 53, 177–188 (1980)

    Google Scholar 

  2. H.O. Mulfinger, F. Krämer: “Analyse von Blasen und Gasen im Glas”, in Glastechnische Fabrikationsfehler, ed. by H. Jebsen-Marwedel, R. Brückner (Springer, Berlin, Heidelberg 1980) pp. 162–179

    Google Scholar 

  3. E.K. Ware, P.P. Pirooz: “Gas adsorption on freshly broken glass surfaces -a source of error in analysis of bubbles in glass”, Glass Technol. 8, 86–87 (1967)

    Google Scholar 

  4. H.O. Mulfinger: “Analyse des Inhalts von Gasblasen im Glas”, Glastechn. Ber. 44, 467–473 (1971)

    Google Scholar 

  5. V.O. Altemose: “Mass spectrometry for the analysis of bubbles in glass”, in Gas Bubbles in Glass, TC14 Report Int. Comm. Glass (Institut National du Verre, Charleroi, Belgium 1985) pp. 64–73

    Google Scholar 

  6. R.L. Schick, E.L. Swarts: “Mass spectrometric analysis of bubbles in glass”, J. Am. Ceram. Soc. 65, 594–597 (1982)

    Article  Google Scholar 

  7. H. Knödler, J.P. Bock, W. Knatz: “Mass spectrometer analysis of the contents of bubbles in glasses in the picoliter range”, Glastechn. Ber. 52, 31–42 (1979)

    Google Scholar 

  8. J.E. Fenstermacher: “Analysis of gases entrapped in glass using a mass spectrometer-ultra high vacuum system”, J. Vac. Sci. Technol. 8, 380–384 (1971)

    Article  ADS  Google Scholar 

  9. A. Götz, InProcess Instruments, Otto-Lilienthal-Str. 21, 28199 Bremen

    Google Scholar 

  10. J. J. Barrett, N.I. Adams, III: “Laser-excited rotation-vibration Raman scattering in ultra-small gas samples”, J. Opt. Soc. Am. 58, 311–319 (1968)

    Article  ADS  Google Scholar 

  11. R.K. Jannsen, D.M. Krol: “Micro-Raman spectroscopy: a technique for analyzing bubbles in glass”, Appl. Opt. 24, 275–279 (1985)

    Article  ADS  Google Scholar 

  12. S.W. Lee, K.S. Hong, R.A. Condrate, Sr., R.P. Hapanowicz, R. F. Speyer: “Characterization of gas components and deposits in bubbles in silicate glasses prepared with sodium sulfate”, J. Mat. Sci. 27, 4961–4966 (1992)

    Article  ADS  Google Scholar 

  13. W.R. Fenner, H.A. Hyatt, J.M. Kellam, S.P.S. Porto: “Raman cross section of some simple gases”, J. Opt. Soc. Am. 63, 73–77 (1973)

    Article  ADS  Google Scholar 

  14. J. Schulze: Quantitative Glasblasenanalyse mittels Raman-Spektroskopie, Diploma Thesis (Mainz 1994);

    Google Scholar 

  15. J. Schulze, R. Feile, D. Köpsel, F. Krämer: “Quantitative analysis of small gas bubbles with diameters down to 60 micron with Micro-Raman spectroscopy”, in Proc. 69. Glastechnische Tagung (Deutsche Glastechnische Gesellschaft, Frankfurt/Main 1995) pp. 90–93

    Google Scholar 

  16. H.O. Mulfinger: “Zum Verhalten von Blasen in Glasschmelzen”, Glastechn. Ber. 45, 238–243 (1972)

    Google Scholar 

  17. H.O. Mulfinger: “Gasanalytische Verfolgung des Lautervorgangs im Tiegel und in der Schmelzwanne”, Glastechn. Ber. 49, 232–245 (1976)

    Google Scholar 

  18. L. Nemec: “The refining of glass melts”, Glass Technol. 15, 153–156 (1974)

    Google Scholar 

  19. M. Mühlbauer, L. Nemec: “Einfluß der Gase einer Glasschmelze auf das Verhalten der Gasblasen unter isothermen Bedingungen”, Glastechn. Ber. 54, 389–399 (1981)

    Google Scholar 

  20. R.G.C. Beerkens: “Chemical equilibrium reactions as driving forces for growth of gas bubbles during refining”, Glastechn. Ber. 63 K, 222–243 (1990)

    Google Scholar 

  21. R.G.C. Beerkens, M. van Kersbergen: “Redox reactions and properties of gases in glass melts”, Final Report NCNG-Novem, TNO Report HAM-RPT-9577, July 1996

    Google Scholar 

  22. F.G.K. Baucke, G. Röth: “Electrochemical mechanism of the oxygen bubble formation at the interface between oxidic melts and zirconium silicate refractories”, Glastechn. Ber. 61, 109–118 (1988)

    Google Scholar 

  23. F.W. Krämer: “Analysis of gases evolved by AZS refractories and by refractory/glass melt reactions. Techniques and results. Contribution to the bubble-forming mechanism of AZS material”, Glastechn. Ber. 65, 93–98 (1992)

    Google Scholar 

  24. F.A.G. van Dijk: Glass Defects Originating from Glass Melt/Fused Cast AZS Refractory Interaction, PhD Thesis (Eindhoven 1994)

    Google Scholar 

  25. F.W. Krämer: “Nitrogen bubbles from AZS refractories”, in Proc. Int. Symp. on Glass Problems, Vol. 1 (Şişecam, Istanbul 1996) pp. 292–297

    Google Scholar 

  26. H.O. Mulfinger: “Gase (Blasen) in der Glasschmelze”, in Glastechnische Fabrikationsfehler, ed. by H. Jebsen-Marwedel, R. Brückner (Springer, Berlin, Heidelberg 1980) pp. 193–268

    Google Scholar 

  27. F.W. Krämer: “Bubble defect diagnosis by means of a mathematical model”, in Coll. Papers XIV. Int. Congress on Glass, Vol. 2 (Indian Ceramic Soc., Calcutta 1986) pp. 288–295

    Google Scholar 

  28. F. Simmonis, H. de Waal, R.C.G. Beerkens: “Influence of furnace design and operation parameters on the residence time distribution of glass tanks, predicted by 3-D computer simulation”, in Coll. Papers XIV Int. Congress on Glass, Vol. II (Indian Ceramic Soc, Calcutta 1986) pp. 118–127

    Google Scholar 

  29. J. Chmelar, P. Schill, A. Franek: “Mathematical models of glass melting furnaces”, Glastechn. Ber. Glass Sci. Technol. 68 C2, 63–66 (1995)

    Google Scholar 

  30. M.K. Choudhary, N.T. Huff: “Mathematical modeling in the glass industry: an overview of status and needs”, Glastechn. Ber. Glass Sci. Technol. 70, 363–370 (1997)

    Google Scholar 

  31. F.W. Krämer: “Mathematical model of bubble growth and dissolution in glass melts”, in Gas Bubbles in Glass, TC14 Report Int. Com. Glass (Institut National du Verre, Charleroi, Belgium 1985) pp. 92–126

    Google Scholar 

  32. J.I. Ramos: “Multicomponent gas bubbles, Part 1+2”, J. Non-Equilib. Thermodyn. 13, 1–25, 107–131 (1988)

    ADS  Google Scholar 

  33. B. Balkanli, A. Ungan: “Numerical simulation of bubble behavior in glass melting tanks, Part 1–4”, Glass Technol. 37 (29–3-4), 101–105, 137–142, 164–168 (1996)

    Google Scholar 

  34. E. Itoh, H. Yoshikawa, Y. Kawase: “Modeling of bubble removal from glass melts at fining temperatures”, Glastechn. Ber. Sci. Technol. 70, 8–16 (1997)

    Google Scholar 

  35. J. Ullrich, J. Klouzek, L. Nemec, M. Rakova: “The significant features of bubble behaviour in the bubble source identification system”, in Fundamentals of Glass Science and Technology, ed. by S. Person (Glafo, Växjö 1997) pp. 630–636

    Google Scholar 

  36. S. Kawachi, Y. Kawase: “Evaluation of bubble removing performance in a TV glass furnace, Part 1+2”, Glastechn. Ber. Glass Sci. Technol. 71, 83–91, 111–119 (1998)

    Google Scholar 

  37. L. Nemec, J. Ullrich: “Calculations of interactions of gas bubbles with glass liquids containing sulphates”, J. Non-Cryst. Solids 238, 98–114 (1998)

    Article  ADS  Google Scholar 

  38. E. Zschimmer: Die Glasindustrie in Jena (Dietrichs, Jena 1912)

    Google Scholar 

  39. W. Vogel: Chemistry of Glass (Am. Ceram. Soc, Columbus OH 1985);

    Google Scholar 

  40. W. Vogel: Glass Chemistry (Springer, Berlin, Heidelberg 1992);

    Google Scholar 

  41. W. Vogel: Glaschemie (VEB Deutscher Verlag für Grundstoffindustrie, 1979 and 1983);

    Google Scholar 

  42. W. Vogel: Glaschemie (Springer, Berlin, Heidelberg 1992)

    Book  Google Scholar 

  43. E.A. Porai-Koshits, V.I. Averjanov: “Primary and secondary phase separation of sodium silicate glasses”, J. Non-Cryst. Solids 1, 29–38 (1968)

    Article  ADS  Google Scholar 

  44. D.W. Johnson, F.A. Hummel: “Phasentrennungserscheinungen in Gläsern”, Compt. Rend. Symp. Leningrad, Akad. Wiss. UdSSR (1968)

    Google Scholar 

  45. D.W. Johnson, F.A. Hummel: Phasentrennungserscheinungen in Gläsern (Verlag Akad. Wiss. UdSSR, Leningrad 1974)

    Google Scholar 

  46. W. Vogel, D. Ehrt: “25 Jahre Glaschemie in Jena”, Z. Chem. 14, 396–404 (1974)

    Article  Google Scholar 

  47. T.P. Seward, D.R. Uhlmann: “Phase separation in the system BaO-SiO2”, J. Am. Ceram. Soc. 51, 278–285 (1968)

    Article  Google Scholar 

  48. W. Skatulla, W. Vogel, H. Wessel: “Über Phasentrennung und Borsäureanomalie in einfachen Natriumborat- und technischen Borosilikatgläsern”, Silicattechnik 9, 51–62 (1958)

    Google Scholar 

  49. W. Vogel: “Struktur der Gläser vom Vycor-Typ im Glassystem Na2O-B2O3-SiO2”, Silicattechnik 9, 323 (1958)

    Google Scholar 

  50. W. Vogel: “Über Phasentrennung im Glas”, in Compt. Rend. Symp. Sur la Fusion du Verre (Union Scientifique Continentale du Verre, Bruxelles 1958) pp. 741–770

    Google Scholar 

  51. K. Kühne: “Eigenschaften und Struktur ultra-mikroporöser Gläser”, Z. Phys. Chem. 204, 20–42 (1955)

    Google Scholar 

  52. W. Vogel: “Sekundäre Entmischungserscheinungen in phosphatgetrübten Borosilikatgläsern”, Silicattechnik 15, 383–387 (1964)

    Google Scholar 

  53. W. Vogel, H.G. Byhan: “Zur Struktur binärer Lithiumsilikatgläser”, Silicattechnik 15, 239–244 (1964)

    Google Scholar 

  54. H. Schönborn: “Aufbau und Eigenschaften der Phosphattrübgläser”, Silicattechnik 10, 390–400 (1959)

    Google Scholar 

  55. W. Vogel, W. Schmidt, L. Horn: “Die mehrphasige Struktur von Barium-borosilikatgläsern als Folge einer stufenförmig ablaufenden Phasentrennung”, Z. Chem. 9, 401–440 (1969)

    Article  Google Scholar 

  56. K. Gerth, A. Rehfeld: “Untersuchungen am System BaO-B2O3-SiO2”, Silicattechnik 20, 227–228 (1969)

    Google Scholar 

  57. W. Vogel, W. Höland, L. Horn, G. Völksch: “Phase separation behaviour of special base glasses — a contribution to the development of bioactive glass ceramics”, J. Phys. 46, C8, 415–420 (1985)

    Google Scholar 

  58. E. Kashieva, J. Dimitriev: private communication

    Google Scholar 

  59. W. Vogel: Struktur und Kristallisation der Gläser (VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1965, 1971)

    Google Scholar 

  60. W. Vogel:. “The microstructure of glass”, Zeiss Information with Jena Review 2, 36–38 (1992)

    Google Scholar 

  61. W. Vogel: Glasfehler (Springer, Berlin, Heidelberg 1993)

    Book  Google Scholar 

  62. W. Vogel, A. Rehfeld, H. Ritschel: “Über die Verteilung farbloser und farbiger Zusatzkomponenten in einfachen Gläsern sowie über Einfluss auf Struktur und Kristallisation”, Silic. Ind. 5, 1–11 (1967)

    Google Scholar 

  63. N.J. Kreidl, M.S. Maklad: “Effect of water content on phase separation”, J. Am. Ceram. Soc. 52, 508–509 (1969)

    Article  Google Scholar 

  64. M.S. Maklad, N.J. Kreidl: “Some effects of OH groups on sodium silicate glasses”, in Proc. 9th Int. Congr. Glass (Institut du Verre, Paris 1971) pp. 75–100

    Google Scholar 

  65. E.N. Boulos, N.J. Kreidl: “Water in glass: a review”, J. Canad. Ceram. Soc. 41, 83–90 (1972)

    Google Scholar 

  66. G.E. Rindone, R.J. Ryder: “Phase separation induced by platinum in sodium phosphate melts”, Glass Ind. 38, 29–31 (1957)

    Google Scholar 

  67. M.K. Murthy: “Influence of platinum nucleation on constitution of and phase separation in sodium phosphate glasses”, J. Am. Ceram. Soc. 44, 412–417 (1961)

    Article  Google Scholar 

  68. J.S. Hayden, D.L. Sapak, A.J. Marker III: “Elimination of metallic platinum in phosphate laser glass”, Proc. SPIE 895, 176–181 (1988)

    Article  Google Scholar 

  69. J.H. Campbell, E.P. Wallerstein, J.S. Hayden, D.L. Sapak, D.E. Warrington, A.J. Marker III, H. Toratani, H. Meissner, S. Nakajima, T. Izumitani: “Elimination of platinum inclusions in phosphate laser glasses”, Lawrence Livermore National Laboratory, UCRL-53932, 1–62 (1989)

    Google Scholar 

  70. J.H. Campbell, E.P. Wallerstein, J.S. Hayden, D.L. Sapak, D.E. Warrington, A.J. Marker III: “Effects of melting conditions on Pt-inclusion content in phosphate laser glasses”, Glastechn. Ber. 68, 11–21 (1995)

    Google Scholar 

  71. J.H. Campbell, E.P. Wallerstein, H. Toratani. H.E. Meissner, S. Nakajima, T.S. Izumitani: “Effects of process gas environment on platinum-inclusion density and dissolution rate in phosphate laser glasses”, Glastechn. Ber. 68, 59–69 (1995)

    Google Scholar 

  72. C.L. Weinzapfel, G.J. Greiner, C.D. Walmer, J.F. Kimmons, E.P. Wallerstein, F.T. Marchi, J.H. Campbell, J.S. Hayden, K. Komiya,T. Kitayama: “Large scale damage testing in a production environment”, NIST Special Publ. 756, 112–122 (1987)

    Google Scholar 

  73. J.S. Hayden, H.J. Hoffmann: “Elimination of particles”, Schott Information 55, 6–8 (1991)

    Google Scholar 

  74. J.S. Hayden, A.J. Marker III: “Engineering of glass for optimized optical and physical properties”, XVI Congreso Internacional Del Vidrio (16th Int. Congr. on Glass), Madrid, Spain, October 4–9 (1992)

    Google Scholar 

  75. A.J. Marker III, J.S. Hayden, J.H. Campbell: “Engineering of glass for specific intracavity and extracavity applications”, Proc. SPIE 1969, 96–103 (1993)

    Article  Google Scholar 

  76. J.S. Hayden, N. Neuroth: “Laser glasses”, in The Properties of Optical Glass, Schott Series on Glass and Glass Ceramics, ed. by H. Bach, N. Neuroth (Springer, Berlin, Heidelberg 1998) pp. 308–321

    Google Scholar 

  77. T. Izumitani, M. Matsukawai, H. Miyode: “Solubility of Pt in Nd-phosphate laser glass”, NIST Special Publ. 756, 29–34 (1987)

    Google Scholar 

  78. C.G. Young: “Glass lasers”, Proc. IEEE 57, 1267–1289 (1969)

    Article  Google Scholar 

  79. National Materials Advisory Board, Division of Engineering, National Research Council: “Fundamentals of damage in laser glass”, Report No. NMAB-271 (Washington, DC 1970)

    Google Scholar 

  80. E.S. Bliss: Damage in Laser Glass, Special Technical Publication No. 469 (Am. Soc. for Testing and Materials, Philadelphia, PA 1970)

    Google Scholar 

  81. J.H. Campbell, E.P. Wallerstein, J.S. Hayden, D.L. Sapak, D. Warrington, A.J. Marker, H. Toratani, H. Meissner, S. Nakajima, T. Izumitani: “Elimination of platinum inclusions in phosphate laser glasses”, LLNL Report UCRL-53932 (Livermore, CA 1989)

    Google Scholar 

  82. J.H. Campbell: “Modeling platinum-inclusion dissolution in phosphate laser glasses”, Glastechn. Ber. 68 (3), 91–101 (1995)

    Google Scholar 

  83. R.W. Hopper, D.R. Uhlmann: “Mechanism of inclusion damage in laser glasses”, J. Appl. Phys. 41 (10), 4023–4037 (1970)

    Article  ADS  Google Scholar 

  84. R.W. Hopper, D.R. Uhlmann: “Vaporization of inclusions during laser operation”, J. Appl. Phys. 41 (4), 5356–5357 (1970)

    Article  ADS  Google Scholar 

  85. R.W. Hopper, C. Lee, D.R. Uhlmann: “The inclusion problem in glass”, in Damage in Laser Materials: 1970, ed. by A.J. Glass, A.H. Guenther, Special Publ. 341 (Nat. Bureau of Standards, Boulder, CO 1970) pp. 55–66

    Google Scholar 

  86. M. Sparks, C.J. Duth Ler: “Theory of infrared absorption and material failure in crystals containing inclusions”, J. Appl. Phys. 44 (7), 3038–3045 (1973)

    Article  ADS  Google Scholar 

  87. Yu.K. Danileiko, A.A. Manenkov, V.S. Nechotailo, A.M. Prokhorov, V.Ya. Khaimo-Mal’kov: “The role of absorbing impurities in laser-induced damage of transparent dielectrics”, Sov. Phys. JETP 36(3), 541–543 (1973)

    ADS  Google Scholar 

  88. N.E. Alekseev, V.P. Gapontsev, M.E. Zhabotinskii, V.B. Kravchenko, Yu.P. Rudnitskii: Laser Phosphate Glasses, English translation, UCRL-Trans-11817 (LLNL, Livermore, CA 1983)

    Google Scholar 

  89. P.V. Avizonis, T. Farrington: “Internal self-damage of ruby and Nd-glass lasers”, Appl. Phys. Lett. 7, 205–206 (1965)

    Article  ADS  Google Scholar 

  90. C. Yamanaka, T. Saski, M. Hongyo, Y. Nagao: “Investigations of damage in laser glass”, in Damage in Laser Materials: 1971, ed. by A.J. Glass, A.H. Guenther (Special Publ. 356, Nat. Bureau of Standards, Boulder, CO 1971) pp. 104–112

    Google Scholar 

  91. S. Stokowski, D. Milam, M. Weber: “Laser induced damage in fluoride glasses: a status report”, in Laser Induced Damage in Optical Materials: 1918, ed. by A.J. Glass, A.H. Guenther, Special Publ. 541 (Nat. Bureau of Standards, Boulder, CO 1978) pp. 99–108

    Google Scholar 

  92. R.P. Gonzales, D. Milam: “Evolution during multiple-shot irradiation of damage surrounding isolated platinum inclusions in phosphate laser glass”, in Laser Induced Damage in Optical Materials: 1978, ed. by H.E. Bennett, A.H. Guenther, D. Milam, B.E. Newman (Special Publ. 746, Nat. Bureau of Standards, Boulder, CO 1985) pp. 128–137

    Google Scholar 

  93. J.H. Pitts: “Modeling laser damage caused by platinum inclusions in laser glass”, in Laser Induced Damage in Optical Materials: 1985, ed. by H.E. Bennett, A.H. Guenther, D. Milam, B.E. Newman, Special Publ. 746 (Nat. Bureau of Standards, Boulder, CO, 1985) pp. 537–546

    Google Scholar 

  94. C.W. Hatcher: “Assessment of laser glass damage on the Nova system”, in 1985 Laser Program Annual Report, UCRL-50021–85 (LLNL, Livermore, CA 1986) Chap. 6, pp. 4–6

    Google Scholar 

  95. T. Izumitani, K. Hosaka, C. Yamanaka: “Laser damage of Hoya laser glass, LCG-11”, in Laser Induced Damage in Optical Materials: 1972, ed. by A.J. Glass, A.H. Guenther (Special Publ. 372, Nat. Bureau of Standards, Boulder, CO 1972) pp. 3–10

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feile, R. et al. (1999). Analysis and Diagnosis of Local Defects. In: Bach, H., Krause, D. (eds) Analysis of the Composition and Structure of Glass and Glass Ceramics. Schott Series on Glass and Glass Ceramics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03746-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03746-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08207-8

  • Online ISBN: 978-3-662-03746-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics