Advertisement

Chemical Resistance and Corrosion, and Ion Release

  • Wilfried Heimerl
  • Friedrich G. K. Baucke
  • Peter Brix
  • Reinhard Conradt
Part of the Schott Series on Glass and Glass Ceramics book series (SCHOTT)

Abstract

Glass is normally regarded as a chemically inert material with high corrosion resistance in comparison to other materials. Nevertheless, chemical reactions between the glass and the media in contact (in particular if they are liquid) will occur. The extent of these reactions depends on different parameters, such as temperature, time, type of glass, pH value of the contacting medium, etc. [5.1–4].

Keywords

Dissolution Rate Glass Surface Borosilicate Glass Silicate Glass Glass Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    R.G. Newton: “The durability of glass — a review”, Glass Technol. 26 (1), 21–38 (1985)Google Scholar
  2. 5.2
    L.L. Hench: “Characterization of glass corrosion and durability”, J. Non-Cryst. Solids 19, 27–39 (1975)ADSCrossRefGoogle Scholar
  3. 5.3
    H. Scholze: “Glass-water interactions”, J. Non-Cryst. Solids 102, 1–10 (1988)ADSCrossRefGoogle Scholar
  4. 5.4
    A. Peters: “Chemisches Verhalten und physikalische Daten von Borosilikatglas”, Techn. Mitteilungen 6, 230–234 (1969)Google Scholar
  5. 5.5
    H. Bach, N. Neuroth (Eds.): The Properties of Optical Glass, Schott Series on Glass and Glass Ceramics (Springer, Berlin, Heidelberg 1995) Chap. 6Google Scholar
  6. 5.6
    ISO 719: “Glass — hydrolytic resistance of glass grains at 98°C — method of test and classification” (1985)Google Scholar
  7. 5.7
    DIN 12116: “Testing of glass; determination of the acid resistance (gravimetric method) and classification” (1976)Google Scholar
  8. 5.8
    ISO 4802–2: “Glass — hydolytic resistance of the interior surfaces of glass containers, Part 2: Determination by flame spectroscopy and classification” (1988)Google Scholar
  9. 5.9
    ISO 720: “Glass — hydrolytic resistance of glass grains at 121°C — method of test and classification” (1985)Google Scholar
  10. 5.10
    ISO 4802–1: “Glass — hydrolytic resistance of the interior surfaces of glass containers, Part 1: Determination by titration method and classification” (1988)Google Scholar
  11. 5.11
    ISO 1776: “Glass: resistance to attack by hydrochloric acid at 100 °C; flame emission or flame atomic absorption spectrometric method” (1985)Google Scholar
  12. 5.12
    ISO 695: “Glass — resistance to attack by a boiling aqueous solution of mixed alkali — method of test and classification” (1991)Google Scholar
  13. 5.13
    F.G.K. Baucke: “Investigation of surface layers, formed on glass electrode membranes in aqueous solutions, by means of an ion sputtering method”, J. Non-Cryst. Solids 14, 13–31 (1974)ADSCrossRefGoogle Scholar
  14. 5.14
    F.G.K. Baucke: “Investigation of electrode glass membranes: proposal of a dissociation mechanism for pH glass electrodes”, J. Non-Cryst. Solids 19, 75–86 (1975)ADSCrossRefGoogle Scholar
  15. 5.15
    F.G.K. Baucke: “Equilibria of functional groups of glass surfaces with cations in contacting solutions”, in The Glassy State, Proc. 7th All-Union Conf., Leningrad, Oct. 13–15, 1981 (Acad. Sci. USSR, Leningrad 1983) pp. 96–108Google Scholar
  16. 5.16
    F.G.K. Baucke: “The modern understanding of the glass electrode response”, Fresenius’ J. Anal. Chem. 349, 582–596 (1994)CrossRefGoogle Scholar
  17. 5.17
    F.G.K. Baucke: “Glass electrodes: why and how they function”, Ber. Bun-senges. Phys. Chem. 100, 1466–1474 (1996)CrossRefGoogle Scholar
  18. 5.18
    H. Bach: “Zur Bestimmung der Reichweiten von beschleunigten Ionen in dünnen Oxidschichten”, Z. Angew. Phys. 28, 239–244 (1970)Google Scholar
  19. 5.19
    H. Bach: “Abtragraten und spezifische Energieverluste von 5.6 keV-Edelgas-ionen an Kieselglas”, Z. Naturforsch. 27a, 333–338 (1972)ADSGoogle Scholar
  20. 5.20
    H. Bach, F.G.K. Baucke: “Investigation of glasses using surface profiling by spectrochemical analysis of sputter-induced radiation: I, Surface profiling technique with high in-depth resolution”, J. Am. Ceram. Soc. 65, 527–533 (1982)CrossRefGoogle Scholar
  21. 5.21
    W.A. Lanford, K. Davies, P. Lamarche, T. Laursen, R. Groleau, R.H. Doremus: “Hydration of soda-lime glass”, J. Non-Cryst. Solids 33, 249–266 (1979)ADSCrossRefGoogle Scholar
  22. 5.22
    P. March, F. Rauch: “Leaching studies of soda-lime silica glass using deuterium- and 18O-enriched solutions”, Glastechn. Ber. 63, 154–162 (1990)Google Scholar
  23. 5.23
    F.G.K. Baucke: “Experimental methods for the investigation of glass-solution interfaces”, in Electrochemistry of Glasses and Glass Melts, Schott Series on Glass and Glass Ceramics, ed. by H. Bach, D. Krause (Springer, Berlin, Heidelberg) to be publishedGoogle Scholar
  24. 5.24
    H. Bach: “Surface analysis by secondary ion mass spectrometry (SIMS) and ion beam spectrochemical analysis (IBSCA)”;Google Scholar
  25. 5.24
    F. Rauch: “High-energy ion beam analysis”, in Surface Analysis of Glasses and Glass Ceramics, and Coatings, Schott Series on Glass and Glass Ceramics, ed. by H. Bach (Springer, Berlin, Heidelberg) to be publishedGoogle Scholar
  26. 5.25
    H. Bach, F.G.K. Baucke: “Investigations of reactions between glasses and gaseous phases by means of photon emission induced during ion beam etching”, Phys. Chem. Glasses 13, 123–129 (1974)Google Scholar
  27. 5.26
    F.G.K. Baucke: “Phosphate and fluoride error of pH glass electrodes. Erroneous potentials caused by a component of some membrane glasses”, J. Electroanal. Chem. 367, 131–139 (1994)CrossRefGoogle Scholar
  28. 5.27
    F.G.K. Baucke: “Thermodynamic origin of the sub-Nernstian response of glass electrodes”, Anal. Chem. 66, 4519–4524 (1994)CrossRefGoogle Scholar
  29. 5.28
    F.G.K. Baucke: “The glass electrode — applied electrochemistry of glass surfaces”, J. Non-Cryst. Solids, 73, 215–231 (1985)ADSCrossRefGoogle Scholar
  30. 5.29
    A. Distèche, M. Dubuisson: “Transient response of the glass electrode to pH step variations”, Rev. Sci. Instrum. 25, 869–875 (1954)ADSCrossRefGoogle Scholar
  31. 5.30
    K. Schwabe, H. Dahms: “Vergleichende Untersuchungen der elektromotorischen Eigenschaften und des chemischen Verhaltens von Glaselektroden mit Hilfe radioaktiver Indikatoren. I. Untersuchungen im Gebiet des Alkalifehlers”, Z. Elektrochem. 65, 518–526 (1961)Google Scholar
  32. 5.31
    G.A. Rechnitz, G.C. Kugler: “Transient phenomena at glass electrodes”, Anal. Chem. 39, 1682–1688 (1967)CrossRefGoogle Scholar
  33. 5.32
    F.G.K. Baucke: “Simultaneous transfer of different ions across anodic electrolyte solution-glass interfaces in electric fields”, in The Physics of Non-Crystalline Solids, ed. by G.H. Frischat (Trans Tech Publications, Aedermannsdorf 1977) pp. 503–508Google Scholar
  34. 5.33
    F.G.K. Baucke: “Electrochemistry and glass structure”, J. Non-Cryst. Solids 129, 233–239 (1991)ADSCrossRefGoogle Scholar
  35. 5.34
    F.G.K. Baucke, H. Bach: “Investigation of glasses using surface profiling by spectrochemical analysis of sputter-induced radiation: II, Field-driven formation and electrochemical properties of protonated glasses containing various proton concentrations”, J. Am. Ceram. Soc. 65, 534–539 (1982)CrossRefGoogle Scholar
  36. 5.35
    A. Wikby: “The surface resistance of glass electrodes in neutral solutions”, J. Electroanal. Chem. 38, 429–443 (1972)CrossRefGoogle Scholar
  37. 5.36
    Z. Boksay, G. Bouquet, S. Dobos: “The kinetics of the formation of leached layers on glass surfaces”, Phys. Chem. Glasses 9, 69–71 (1968)Google Scholar
  38. 5.37
    H. Scholze, D. Helmreich, I. Bakerdijev: “Untersuchungen über das Verhalten von Kalk-Natrongläsern in verdünnten Säuren”, Glastechn. Ber. 48, 237–247 (1975)Google Scholar
  39. 5.38
    G. Eisenman: “The origin of the glass electrode potential”, in Glass Electrodes for Hydrogen and Other Cations, Principles and Practice, ed. by G. Eisenman (Dekker, New York 1967) pp. 133–173Google Scholar
  40. 5.39
    F.G.K. Baucke: “Corrosion of glasses and its significance for glass coating”, Electrochim. Acta 39, 1223–1228 (1994)CrossRefGoogle Scholar
  41. 5.40
    G.A. Perley: “pH-responsive glass electrode”, US Patent 2 444 845 (1948)Google Scholar
  42. 5.41
    G.A. Perley: “Glasses for measurement of pH”, Anal. Chem. 21, 394–401 (1949)CrossRefGoogle Scholar
  43. 5.42
    I.V. Tananaev, I.A. Rozanov, E.N. Bresnev: “The solubility product in the method of residual concentrations”, Izv. Akad. Nauk. Neorg. Mater. 5, 419–426 (English translation: 347–353) (1969)Google Scholar
  44. 5.43
    J.A. Cornell: Experiments with Mixtures (Wiley, New York 1981)MATHGoogle Scholar
  45. 5.44
    B. Wheeler: “Software for the design of experiments”, reference manual (Echip Inc., 724 Yorklyn Road Hockessin, DE 19707–8703, 1993)Google Scholar
  46. 5.45
    M.J. Plodinec: “Advances in processing nuclear waste glasses”, in Proc. 1st Int. Conf. on Advances in the Fusion of Glass, 9.1–9.11 (Am. Ceram. Soc, Westerville, OH 1988)Google Scholar
  47. 5.46
    X. Chao, C. Jinshu, G. Liping: The Mixed-Alkali Effekt and the Resistance of Float Glasses to Water, in Proc. XVII Int. Congress on Glass, Vol. 3 (Chinese Ceram. Soc, Beijing 1995) pp. 113–120Google Scholar
  48. 5.47
    P. Brix, G. Lautenschläger, K. Schneider, T. Kloss: “Alkalifreies Alumoboro-silicatglas und dessen Verwendung”, German Patent 19 603 698, filed Feb. 2, 1996Google Scholar
  49. 5.48
    A. Dian: Boll. Chim. Farm. 38, 697 (1899)Google Scholar
  50. 5.49
    Schott Jena: “Jena Glass for Laboratories and Fiolax Glass”, list 896 (1910)Google Scholar
  51. 5.50
    A. Kämpfer, G. Kemmler, T. Kloss, E. Watzke: “Borsäurearmes Borosilikatglas und Scine Verwendung”, German Patent 4 430 710, filed Oct. 6, 1993Google Scholar
  52. 5.51
    P. Brix, A. Kämpfer, F. Ott, E. Watzke: “Zirkon- und lithiumoxidhaltiges Borosilicatglas hoher chemischer Beständigkeit und geringer Viskosität und dessen Verwendung”, German Patent 19 536 708, filed Sept. 30, 1995Google Scholar
  53. 5.52
    H. Scholze: Glass — Nature, Structure, and Properties (Springer, Berlin, Heidelberg 1990)Google Scholar
  54. 5.53
    A. Paul: Chemistry of Glasses (Chapman & Hall, London 1982)CrossRefGoogle Scholar
  55. 5.54
    D.E. Clark, B.K. Zoitos: Corrosion of Glass, Ceramics, and Ceramic Superconductors (Noyes, New Jersey 1992)Google Scholar
  56. 5.55
    C.M. Jantzen, M.J. Plodinec: “Thermodynamic model of natural, medieval and nuclear waste glass durability”, J. Non-Cryst. Solids 62, 207–223 (1984)CrossRefGoogle Scholar
  57. 5.56
    C.M. Jantzen: “Thermodynamic approach to glass corrosion”, in Corrosion of Glass, Ceramics, and Ceramic Superconductors, ed. by D.E. Clark, B.K. Zoitos (Noyes, New Jersey 1992) pp. 153–217Google Scholar
  58. 5.57
    R. Conradt, H. Roggendorf, R. Ostertag: “The basic corrosion mechanism of HLW glasses”, Commission of the European Communities Report EUR 10680 EN, Brüssel 1986Google Scholar
  59. 5.58
    B. Grambow: Ein physikalisches Modell für den Mechanismus der Glaskorrosion — unter besonderer Berücksichtigung simulierter radioaktiver Abfallgläser, Dissertation (Berlin 1984)Google Scholar
  60. 5.59
    B. Grambow: “Geochemical approach to glass dissolution”, in Corrosion of Glass, Ceramics, and Ceramic Superconductors, ed. by D.E. Clark, B.K. Zoitos (Noyes, New Jersey 1992) pp. 124–152Google Scholar
  61. 5.60
    J.D. Rimstidt, H.L. Barnes: “The kinetics of silica-water reactions”, Geochim. Cosmochim. Acta 44, 1683–1699 (1980)ADSCrossRefGoogle Scholar
  62. 5.61
    P. Aagaard, H.C Helgeson: “Thermodynamic and kinetic constraints on reactions among minerals and aqueous solutions”, J. Am. Sci. 282, 237–285 (1982)CrossRefGoogle Scholar
  63. 5.62
    EQ3/6: Software package for geochemical modeling, Lawrence Livermore National Laboratory, CA, USA 1997Google Scholar
  64. 5.63
    M. Aertsen, P. van Iseghem: “Modelling glass dissolution with a Monte Carlo technique”, Mat. Res. Soc. Symp. 412, 271–278 (1996)CrossRefGoogle Scholar
  65. 5.64
    M. Aertsen, P. van Iseghem: “Molecular modelling of glass dissolution”, in Fundamentals of Glass Science and Technology, ed. by S. Persson (Glafo, Växjö 1997) pp. 444–449Google Scholar
  66. 5.65
    M. Kinoshita, M. Harada, Y. Sato, Y. Hariguchi: “Percolation phenomenon for the dissolution of sodium borosilicate glasses in aqueous solutions”, J. Am. Ceram. Soc. 74, 783–787 (1991)CrossRefGoogle Scholar
  67. 5.66
    F.G.K. Baucke: “Corrosion of glasses and its significance for glass coating”, Electrochim. Acta 39, 1223–1228 (1994)CrossRefGoogle Scholar
  68. 5.67
    F.G.K. Baucke: “Thermodynamic origin of the sub-Nernstian response of glass electrodes”, Anal. Chem. 66, 4519–4524 (1994)CrossRefGoogle Scholar
  69. 5.68
    F.G.K. Baucke: “Glass electrodes: why and how they function”, Ber. Bunsenges. Phys. Chem. 100, 1466–1474 (1996)CrossRefGoogle Scholar
  70. 5.69
    R. Conradt, H. Scholze: “Corrosion of glass in aqueous solutions — a still unsolved problem?”, Rev. Staz. Sper. Vetro, Spez. 5, 73–77 (1984)Google Scholar
  71. 5.70
    H. Scholze: “Bedeutung der ausgelaugten Schicht für die chemische Beständigkeit: Untersuchungen an einem Kalk-Natronsilicatglas”, Glastechn. Ber. 58, 116–124 (1985)Google Scholar
  72. 5.71
    H. Scholze: “Glass-water interactions”, J. Non-Cryst. Solids 102, 1–10 (1988)ADSCrossRefGoogle Scholar
  73. 5.72
    R. Conradt, P. Geasee: “An improved thermodynamic approach to the stability of multi-component silicate glasses in aqueous solutions”, Ber. Bunsenges. Phys. Chem. 100, 1408–1410 (1996)CrossRefGoogle Scholar
  74. 5.73
    J.A. Dean (Ed.): Lange’s Handbook of Chemistry (McGraw-Hill, New York 1987)Google Scholar
  75. 5.74
    R.K. Her: The Chemistry of Silica (Wiley, New York 1979)Google Scholar
  76. 5.75
    Z. Boksay, G. Bouquet: “The pH dependence and an electrochemical interpretation of the dissolution rate of a silicate glass network”, Phys. Chem. Glasses 21, 110–113 (1980)Google Scholar
  77. 5.76
    H. Scholze: “Evidence of control of dissolution rates of glasses by H+ mobility”, J. Am. Ceram. Soc. 60, 186 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Wilfried Heimerl
  • Friedrich G. K. Baucke
  • Peter Brix
  • Reinhard Conradt

There are no affiliations available

Personalised recommendations