Skip to main content

Abstract

The chemical analysis of glasses, glass ceramics, ceramics, glass raw materials, and increasingly the analysis of residues of the glass production (e.g., dusts, condensates, cullet, and glass “scrap”) that cause environmental problems, is done by a variety of classical and modern wet-chemical analytical methods. They mainly serve for quality control, quality assurance and improvement in quality as well as preparation for further steps in the glass production. To achieve a high precision and correctness of the results by using the optimal methods a combination of different analytical methods is used in the mostly siliceous samples according to the oxide or element concentration expected. The high competence of the chemical-analytical laboratories of Schott corresponding to EN was certified by the GAZ (Gesellschaft für Akkreditierung und Zertifizierung) in January 1994.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Fürstenwald-Vogl: “Klein- und Fein-Labormühlen schaffen auch große Brocken”, LABO, 8–23 (May 1998)

    Google Scholar 

  2. R. Bock: A Handbook of Decomposition Methods in Analytical Chemistry (Int. Textbook, London 1979)

    Google Scholar 

  3. Z. Šulcek, P. Povondra: Methods of Decomposition in Inorganic Analysis (CRC, Boca Raton, CA 1989)

    Google Scholar 

  4. C.F. Mason: “Spectrophotometric determination of oxidation states of selenium in glass”, Anal. Chem. 53, 1147–1149 (1981)

    Google Scholar 

  5. C. Gerhardt: “Schnellaufschlußgerät Acidorapid”, product information (Gerhardt, Bonn 1983)

    Google Scholar 

  6. H.M. Kingston, L.B. Jassie: Introduction to Microwave Sample Preparation (ACS, Washington, DC 1988)

    Google Scholar 

  7. German Standard DIN 51084: “Prüfung von oxidischen Roh- und Werkstoffen für Keramik, Glas und Glasuren; Bestimmung des Gehaltes an Fluorid” (Beuth, Berlin 1987)

    Google Scholar 

  8. W. Dusdorf, H. Müller-Simon: “Investigation into the existence of hexavalent chromium in industrial glasses”, Glastechn. Ber. Glass Sci. Technol. 70, 325–328 (1997)

    Google Scholar 

  9. B. Hahn, P. Buhler, R. Weismann: “Influence of the total iron content on the redox ratio”, Revista Staz. Sper. Vetro 23, 205–210 (1993)

    Google Scholar 

  10. German Industrial Standard DIN 51085: “Bestimmung des Gehaltes an Gesamtschwefel” (Beuth, Berlin 1997)

    Google Scholar 

  11. E.P. Bertin: Principles and Practice of X-Ray Spectrometric Analysis, 2nd ed. (Plenum, New York 1975) pp. 717–720

    Google Scholar 

  12. P.J. Potts: A Handbook of Silicate Rock Analysis (Blackie, Glasgow 1992) pp. 271–272

    Google Scholar 

  13. F.J. Dörr: “Röntgenfluoreszenzanalysen im Dienst der Spezialglasherstellung”, Glastechn. Ber. 54 (6), 195–197 (1981)

    Google Scholar 

  14. E.P. Bertin: Principles and Practice of X-Ray Spectrometric Analysis, 2nd ed. (Plenum, New York 1975) pp. 751–762

    Google Scholar 

  15. E.P. Bertin: Principles and Practice of X-Ray Spectrometric Analysis, 2nd ed. (Plenum, New York 1975) pp. 732–751

    Google Scholar 

  16. P.J. Potts: A Handbook of Silicate Rock Analysis (Blackie, Glasgow 1992) p. 272

    Google Scholar 

  17. R. Müller: Spektrochemische Analysen mit Röntgenfluoreszenz (Oldenbourg, München 1967)

    Google Scholar 

  18. J. Lange: Chemische Analyse glasiger Systeme (Deutscher Verlag für Grundstoffindustrie, Leipzig 1991)

    Google Scholar 

  19. H.M. Köster: Die chemische Silicatanalyse (Springer, Berlin, Heidelberg 1979)

    Google Scholar 

  20. P.J. Potts: A Handbook of Silicate Rock Analysis (Blackie, Glasgow 1992)

    Google Scholar 

  21. G. Jander, K.F. Jahr, H. Knoll: Maßanalyse (Gruyter, Berlin 1966)

    Google Scholar 

  22. A. Peters: “Determination of reducing components in glassmaking materials”, Glastechn. Ber. 66, 159–164 (1993)

    Google Scholar 

  23. R.G. Koch, A. Koch-Dedic: Handbuch der Spurenanalyse (Springer, Berlin, Heidelberg 1974)

    Google Scholar 

  24. B. Lange, Z.J. Vejdělek: Photometrische Analyse (VCH, Weinheim 1980)

    Google Scholar 

  25. B. Welz, M. Sperling: Atomabsorptionsspektrometrie (Wiley-VCH, Weinheim 1997)

    Google Scholar 

  26. International Commission on Glass, Technical Committee 2: “Determination of total and oxidation states of selenium in glass by vapor generation atomic absorption spectrometry”, ICG/TC2/96–1088, 1–8 (1996)

    Google Scholar 

  27. European Standard ISO 11969: “Bestimmung von Arsen” (Beuth, Berlin 1996)

    Google Scholar 

  28. E. Guadagnino, G.C. DeDiana, G. Rizzo: “Determination of mercury in glass”, Glastechn. Ber. 66, 100–104 (1993)

    Google Scholar 

  29. P.W.J.M. Boumans: Inductively Coupled Plasma Emission Spectroscopy (Wiley, Chichester 1987)

    Google Scholar 

  30. R.K. Winge, V.A. Fassel, V.J. Peterson, M.A. Floyd: Inductively Coupled Plasma-Atomic Emission Spectroscopy (Elsevier, Amsterdam 1985)

    Google Scholar 

  31. A. Montaser, D.W. Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry (VCH, Weinheim 1987)

    Google Scholar 

  32. H. Gunzler, H. Bock: IR-Spektroskopie (VCH, Weinheim 1990)

    Google Scholar 

  33. LECO: Calibration Samples and Standard Reference Materials, catalogue (LECO, St. Joseph, USA 1986)

    Google Scholar 

  34. Georg Schwedt: Taschenatlas der Analytik (Thieme, Stuttgart 1996) p. 97

    Google Scholar 

  35. J.S. Becker, H.-J. Dietze (Ed.): Entwicklung und Anwendung massenspektro-metrischer Methoden zur Spuren-, Ultraspuren-, Isotopen- und Oberflächenanalytik für Forschungsaufgaben des Forschungszentrums Jülich, Berichte des Forschungszentrums Jülich, Vol. 3272 (Forschungszentrum, Jülich 1996)

    Google Scholar 

  36. C. Strubel: Verfahrensentwicklung zur analytischen Bestimmung der Spuren-und Ultra-Spuren-Elementkonzentrationen in Gläsern, Glasrohstoffen und Umweltproben mittels ICP-MS, Diploma Thesis (Mainz 1995)

    Google Scholar 

  37. Perkin Elmer: Software-Handbuch für das Elan 6000 ICP-Massenspektrometer, ed. 1.0 (Perkin Elmer, Überlingen 1996)

    Google Scholar 

  38. A.R. Date, A.L. Gray: Applications of Inductively Coupled Plasma Mass Spectrometry (Blackie, Glasgow 1989)

    Google Scholar 

  39. G. Taylor: “ICP-MS, or ICP-AES and AAS? A comparison”, Spectroscopy Europe 7 (1), 14–22 (1995)

    Google Scholar 

  40. P. Rommers, P. Boumans: “ICP-AES versus (LA-)ICP-MS: Competition or a happy marriage? A view supported by current data”, Fresenius’ J. Anal. Chem. 355, 763–770 (1996)

    Google Scholar 

  41. K. Vaas: Quantitative Analyse von Gläsern mit ICP-MS Laserablation, Diploma Thesis (Fachhochschule Aalen and IBM Germany, Sindelfingen 1992)

    Google Scholar 

  42. M. Paul: “LA-ICP-MS mittels Excimer-Lasern: Konzeption und Anwendungen”, in 3rd Symp. Massenspektrometrische Verfahren der Elementspurenanalyse (Forschungszentrum, Jülich 1996) p. 34

    Google Scholar 

  43. L. Moenke-Blankenburg: Laser Micro Analysis, Chemical Analysis, Vol. 105, ed. by J.D. Winefordner, I.M. Kolthoff (Wiley, New York 1989)

    Google Scholar 

  44. H.P. Longerich, D. Günther, S.E. Jackson: “Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry”, Fresenius’ J. Anal. Chem. 355, 538–542 (1996)

    Google Scholar 

  45. Römpp Lexikon Chemie, Version 1.1, CD-ROM, 10th ed. (Thieme, Stuttgart 1996)

    Google Scholar 

  46. Perkin Elmer: “Laser model 330”, broschure B 050–4387 (Überlingen 1996)

    Google Scholar 

  47. K.P. Jochum, H.M. Seufert: “Trace element analysis of geological glasses by laser plasma ionization mass spectrometry (LIMS): A comparison with other multielement and microanalytical methods”, Fresenius’ J. Anal. Chem. 359, 454–457 (1997)

    Google Scholar 

  48. K.P. Jochum, H.M. Seufert: “In-situ-Mikroanalyse mittels Laser-plasmaioni-sations-Massenspektrometrie (LIMS)”, GIT, Fachzeitschrift für das Laboratorium 40, 517–521 (1996) special print

    Google Scholar 

  49. A. Raith, R.C. Hutton: “Quantitation methods using laser ablation ICP-MS, Part 1: Analysis of powders”, Fresenius’ J. Anal. Chem. 350, 242–246 (1994)

    Google Scholar 

  50. A. Raith, J. Godfrey, R.C. Hutton: “Quantitation methods using laser ablation ICP-MS, Part 2: Evaluation of new glass standards”, Fresenius’ J. Anal. Chem. 354, 163–168 (1996)

    Google Scholar 

  51. V.D. Scott, G. Love, S.J.B. Reed: Quantitative Electron Probe Microanalysis, 2nd ed. (Ellis Horwood, New York 1995)

    Google Scholar 

  52. J.D. Potts: Silicate Rock Analysis (Blackie, Glasgow 1987) pp. 326–382

    Google Scholar 

  53. L.S. Birks: Electron Probe Microanalysis (Wiley Interscience, New York 1963)

    Google Scholar 

  54. D.E. Newbury, NIST, data presented during round-table discussion at the EMAS ’97 workshop in Torquay, UK (May 1997)

    Google Scholar 

  55. F.J. Dörr: “Röntgenspektroskopie, Röntgenfluoreszenzanalyse” and “Elek-tronenstrahlmikrosonde”, in Glastechnische Fabrikationsfehler, ed. by H. Jebsen-Marwedel, R. Brückner, 3rd ed. (Springer, Berlin, Heidelberg 1980) pp. 148–155

    Google Scholar 

  56. S. Steeb, H.-G. Bachmann, U. Kraeft, C.H. Lührs, H. Schuon, G. Staats, W. Weisweiler: Röntgenspektralanalyse und Mikrosondentechnik (Expert, Sindelfingen 1987) pp. 1–154

    Google Scholar 

  57. P.J. Potts: A Handbook of Silicate Rock Analysis (Blackie, Glasgow 1992) pp. 226–325

    Google Scholar 

  58. R. Müller: Spektrochemische Analysen mit Röntgenfluoreszenz (Oldenbourg, München 1967)

    Google Scholar 

  59. E.P. Bertin: Principles and Practice of X-Ray Spectrometric Analysis, 2nd ed. (Plenum, New York 1975)

    Google Scholar 

  60. American Society for Testing and Materials: X-Ray Emission and Absorption Wavelengths and Two-Theta Tables, 2nd ed. (Am. Soc. for Testing and Materials, Philadelphia, PA 1970)

    Google Scholar 

  61. G. Medicus, G. Ackermann: “Universal method for X-ray fluorescence analysis of glasses, rocks, refractories and raw materials”, Fresenius’ J. Anal. Chem. 339, 226–229 (1991)

    Google Scholar 

  62. K. Ohno, M. Yamazaki: “Accuracy evaluation of results obtained by fundamental parameter method in X-ray fluorescence spectrometry”, Adv. X-Ray Chem. Anal. Jpn. 18, 81–91 (1987)

    Google Scholar 

  63. R. Plesch: Auswerten und Prüfen in der Röntgenspektrometrie (Giebeler, Darmstadt 1982)

    Google Scholar 

  64. K. Löbe, H. Lucht: “Laserinduzierte Plasmaspektralanalyse zur unmittelbaren Messung fester Proben”, GIT Labor-Fachzeitschrift 2, 105–110 (1998)

    Google Scholar 

  65. F. Krämer: “Mathematisches Modell der Veränderung von Gasblasen in Glasschmelzen”, Glastechn. Ber. 52, 43–50 (1979)

    Google Scholar 

  66. M. Laubke: Einfluß der Umgebungsbedingungen auf die Elementverteilung in Floatglas Oberflächen und Beschichtungen, PhD Thesis (Frankfurt 1996) pp. 19–23

    Google Scholar 

  67. J.P. Williams, F.J. Farncomb, T.S. Madliocca: “Determination of sulfur in glass”, J. Am. Ceram. Soc. 40, 352–354 (1957)

    Google Scholar 

  68. W. Gruner, E. Grallath: “Improvements in the combustion method for determination of low carbon contents in steel”, Steel Research 66, 455–457 (1995)

    Google Scholar 

  69. X.Y. Shi, K.S. Nasev, M.P. Brungs, D.J. Young: “Determination of total and sulphide sulfur in float glass by ion chromatography”, Glass Technol. 33, 173–175 (1992)

    Google Scholar 

  70. R. Pyare, P. Nath: “A simple and rapid spectrophotometric method for determination of sulphite and sulphate in binary sodium silicate glasses”, Glass Technol. 27, 21–23 (1986)

    Google Scholar 

  71. G. Kaiser, H. Schubert: “The determination of oxygen in Si3N4powder”, J. Europ. Ceram. Soc. 11, 253–262 (1993)

    Google Scholar 

  72. R.G.C. Beerkens: “Redox reactions and properties of gases in glass melts”, Final Report NCNG-November (1995) pp. 38–43; TNO Report HAM-RPT 9577 (July 1996)

    Google Scholar 

  73. M. Gaber, U. Harder, M. Hähnert, H. Geißler: “Water release behavior of soda-lime-silica glass melts”, Glass Sci. Technol. 68, 339–345 (1995)

    Google Scholar 

  74. H.-O. Mulfinger, H. Scholze: “Löslichkeit und Diffusion von Helium in Glasschmelzen. I. Löslichkeit”, Glastechn. Ber. 35, 466–478 (1962)

    Google Scholar 

  75. K.-H. Schier, W. Bauer: “Untersuchungen über im Glas gelöste Gase mit Hilfe einer induktiv beheizten Extraktionapparatur”, Silikattechnik 14, 72–75 (1963)

    Google Scholar 

  76. J. Zluticky, J. Stverak, L. Nemec: “Bestimmung der im Glas gelösten Gase über Hochtemperatur-Vakuumheißextraktion”, Glastechn. Ber. 45, 406–409 (1972)

    Google Scholar 

  77. F. Krämer: “Contribution to basicity of technical glass melts in relation to redox equilbria and gas solubility”, Glastechn. Ber. 64, 71–80 (1991)

    Google Scholar 

  78. A. Breth, R. Dobrozemsky: “Investigation of the gas content of glasses by means of the dynamic extraction method”, Acta Physica Acad. Scient. Hung. 49, 293–299 (1980)

    Google Scholar 

  79. R. Dobrozemsky: “Calibration of vacuum systems by gas quantities”, Vacuum 41, 2109–2111 (1990)

    Google Scholar 

  80. H. Imagawa, M. Aoyagi, K. Saitoh, S. Uchiyama: “Redox behaviors of Ce and Sb in soda-lime glass studied by evolved gas and UV spectroscopic analysis”, Proc. 4th Int. Conf. Advances in Fusion and Processing of Glass, Würzburg 1995, Glass Sci. Technol. 68 C (2), 217–224 (1995)

    Google Scholar 

  81. E. Hartung, K. Heide, H.-G. Schmidt: “Charakterisierung des Entgasungsverhaltens von Behältergläsern”, Silikattechnik 38, 309–312 (1987)

    Google Scholar 

  82. M. Jäger: “Quantitative Bestimmung der im Glas chemisch und physikalisch gelösten Gase”, 69. Glastechn. Tagung, Würzburg (1995) pp. 94–97

    Google Scholar 

  83. T. Stelzner, K. Heide: “Degassing behavior of optical glasses”, Glastechn. Ber. 65, 150–156 (1992)

    Google Scholar 

  84. H. Scholze: “Der Einbau des Wassers in Gläsern, Teil 1”, Glastechn. Ber. 32, 81–88 (1959)

    Google Scholar 

  85. J. Zluticky: “Bestimmung des im Glas gelösten Kohlen- und Schwefeldioxids über die gaschromatografische Analyse”, Glastechn. Ber. 47, 232–238 (1974)

    Google Scholar 

  86. J.W. Robinson (Ed.): Handbook of Spectroscopy, Vol. 1 (CRC, Cleveland, OH 1974) pp. 28–155

    Google Scholar 

  87. V.D. Scott, G. Love, S.J.B. Reed: Quantitative Electron Probe Microanalysis, 2nd ed. (Ellis Horwood, New York 1995) p. 151

    Google Scholar 

  88. J.A. Anzelmo, B.W. Boyer: “The analysis of carbon and other light elements using layered Synthetic microstructures”, Adv. X-Ray Anal. 30, 193–200 (1987)

    Google Scholar 

  89. S. Uhlig: “Advances of boron analysis in glass and ceramics”, in Fundamentals of the Glass Manufacturing Process 1991, Proc. 1st Conf. of the European Society of Glass Science and Technology, Sheffield, England, Sept. 9–12, 1991 (Soc. Glass Technology, Sheffield 1992) pp. 40–41

    Google Scholar 

  90. P. Buchmayer, W. Hoffmann, L. Meckel: “Recommended procedure for the chemical analysis of soda-lime silica glasses and raw materials by atomic absorption spectrometry”, Glastechn. Ber. 60, 47–54 (1987)

    Google Scholar 

  91. International Commission on Glass: “Method for determining colouring elements (iron, chromium, copper, cobalt, nickel and manganese) in glass-making limestone and dolomite by flame absorption spectrometry (FAAS)”, ICG/TC 2, 86–663 (1986)

    Google Scholar 

  92. L. Meckel: “Ein erprobtes Verfahren zur Neodym-Bestimmung in Gläsern”, Glastechn. Ber. 56 K, 668–670 (1983)

    Google Scholar 

  93. L. Meckel: “Bestimmung von Ceroxid in technischen Gläsern mittels ICP-XES”, in Fortschritte in der atomspektrometrischen Spurenanalytik, Vol. 2, ed. by B. Welz (VCH, Weinheim 1986) pp. 317–323

    Google Scholar 

  94. L. Dunemann, J. Begerow: Kopplungstechniken zur Elementspeziesanalytik (VCH, Weinheim 1995)

    Google Scholar 

  95. P. Close, H.M. Shepherd, C.H. Drummond: “Determination of several valences of iron, arsenic and antimony, and selenium in glass”, J. Am. Ceram. Soc. 41 (11), 455–460 (1958)

    Google Scholar 

  96. K. Sriramam, B. Sarma, N. Ramabrahma Sastry, A. Prasad: “Sequential titration of iron(II), antimony (III) and arsenic(III) in binary or ternary mixture”, Talanta 28, 963–965 (1981)

    Google Scholar 

  97. International Commission on Glass, Technical Committee 2: “Determination of hexavalent chromium in glass by molecular absorption spectroscopy”, ICG/TC 2, 1–4 (1995)

    Google Scholar 

  98. R. Manz: “Bestimmung von Cr(III) und Cr(VI) in Gläsern”, Labornotiz (Schott Glas, Mainz 1995)

    Google Scholar 

  99. A. Paul, R.W. Douglas: “Ultra-violet absorption of chromium (VI) in binary alkali borate glasses”, Phys. Chem. Glasses 8 (4), 151–159 (1967)

    Google Scholar 

  100. M. Hammann, W. Fichtner, B. Pohl: “Trennung von Chrom(III) und Chrom(VI) mit anschließender Detektion von Chrom(VI) im unteren ppb-Bereich”, CLB 44 (11), 560–564 (1993)

    Google Scholar 

  101. A. Paul, D. Lahiri: “A note on the study of the AS2O3-AS2O5 equilibrium in glass”, Trans. Indian Ceram. Soc. 22 (4), 146–150 (1963)

    Google Scholar 

  102. A. Paul: “A rapid method for the estimation of trivalent arsenic in glass”, Glass Technol. 6 (1), 22–25 (1965)

    Google Scholar 

  103. R. Pyare, S.P. Singh, A. Singh, P. Nath: “The As3+-As5+ equilibrium in borate and silicate glasses”, Phys. Chem. Glasses 23 (5), 158–168 (1982)

    Google Scholar 

  104. S.P. Singh, R. Pyare, G. Prasad, P. Nath: “Rapid spectrophotometric method for the determination of arsenic(III) in borate glasses”, Analyst 104, 1094–1097 (1979)

    ADS  Google Scholar 

  105. R. Akiyama, A. Takenaka, M. Sugizaki: “Determination of antimonic(III) and antimonic(V) in glasses by ion chromatography/inductively coupled plasma atomic emission spectrometry”, Rep. Res. Lab. Asahi Glass 44 (1,2), 13–18 (1994)

    Google Scholar 

  106. D.M. Krol, P.J. Rommers: “Oxidation-reduction behaviour of antimony in silicate glasses prepared from raw materials and cullet”, Glass Technol. 25 (2), 115–118 (1984)

    Google Scholar 

  107. W. Wagner, S. Sander, G. Henze: “Trace analysis of antimony (III) and antimony(V) by adsorptive stripping völtammetry”, Fresenius’ J. Anal. Chem. 354, 11–15 (1996)

    Google Scholar 

  108. W. Nielsch, G. Böltz: “Zur Extraktion und photometrischen Bestimmung des Antimons mit Rhodamin B”, Z. Anal. Chem. 143, 264–272 (1954)

    Google Scholar 

  109. E. Fritsch, F. Babonneau, C. Sanchez, G. Calas: “Vanadium incorporation in silica glasses”, J. Non-Cryst. Solids 92, 282–294 (1987)

    ADS  Google Scholar 

  110. U. Priyadarshini, S.G.Tandon: “Spectrophotometry determination of vana-dium(V) with N-benzoyl-N-phenylhydroxy lamine”, Anal. Chem. 33 (3), 435–438 (1961)

    Google Scholar 

  111. I.I. Kitaigorodskii, V.K. Frolov: “The determination of vanadium oxides in glass by oxidimetric methods”, Zavodskaya Laboratoriya 25(4), 418–422 (1960)

    Google Scholar 

  112. D.E. Ryan: “The calorimetric determination of vanadium with benzoyl-phenylhydroxylamine”, Analyst 85, 569–574 (1969)

    ADS  Google Scholar 

  113. A.M.G. Macdonald: “Analytical applications of N-benzoyl-N-phenylhydroxylamine”, Ind. Chemist 36, 512–514 (1960)

    Google Scholar 

  114. W.P. Close, J.F. Tillman: “Chemical analysis of some elements in oxidation-reduction equilibria in silicate glasses”, Glass Technol. 10 (5), 134–146 (1969)

    Google Scholar 

  115. R. Pyare, P. Nath: “Simple and rapid spectrophotometric method for the determination of tin(II) in binary alkali silicate glasses”, Analyst 110, 1321–1323 (1985)

    ADS  Google Scholar 

  116. A. Lechtenböhmer, B.D. Mosel, W. Müller-Warmuth, H. Dutz: “Mößbauer-Untersuchungen über die strukturelle Rolle von Zinn in Boratgläsern”, Glastechn. Ber. 55, 161–166 (1982)

    Google Scholar 

  117. F.G.K. Baucke, J.A. Duffy: “Oxidation states of ions in glass melts”, Phys. Chem. Glasses 35 (1), 17–21 (1994)

    Google Scholar 

  118. C. Rüssel, E. Freude: “Voltammetric studies of the redox behaviour of various multivalent ions in soda-lime-silica glass melts”, Phys. Chem. Glasses 30 (2), 62–68 (1989)

    Google Scholar 

  119. J.W.H. Schreurs, R.H. Brill: “Iron and sulfur related colors in ancient glasses”, Archaeometry 26 (2), 199–209 (1984)

    Google Scholar 

  120. N. Furuta, T. Shinofuji: “Determination of different oxidation states of arsenic and selenium by inductively coupled plasma — atomic emission spectrometry with ion chromatography”, Fresenius’ J. Anal. Chem. 355, 457–460 (1996)

    Google Scholar 

  121. L. Meckel: “Analytical determination of trace element concentrations of precious metal and colouring oxides in optical glasses and communication light guides”, Fresenius’ J. Anal. Chem. 343, 751–753 (1992)

    Google Scholar 

  122. U. Rohr, L. Meckel: “Determination of arsenic in glass and raw materials for glass via quartz-tube hydride generation AAS after separation by solvent extraction”, Fresenius’ J. Anal. Chem. 342, 370–375 (1992)

    Google Scholar 

  123. U. Rohr, L. Meckel, H.M. Ortner: “Ultratrace analysis of uranium and thorium in glass — Part 1”, Fresenius’ J. Anal. Chem. 348, 356–363 (1994); Part 2, Fresenius’ J. Anal. Chem. 349, 412–423 (1994)

    Google Scholar 

  124. Y-Su Su, T.S. Magliocca, K.F. Sugawara et al.: “Titrimetric determination of silver, chloride, and bromide in glasses”, Anal. Chim. Acta 98, 115–119 (1978)

    Google Scholar 

  125. B. Lange, Z.J. Vejdëlek: Photometris che Analyse, 7th ed. (VCH, Weinheim 1980) p. 341

    Google Scholar 

  126. W.F. Hillebrand, G.E.F. Lundell, H.A. Bright et al.: Applied Inorganic Analysis (Wiley, New York 1962) pp. 730, 744

    Google Scholar 

  127. W. Knappek: Analyse von Silber und Halogeniden in Gläsern nebeneinander, Diploma Thesis (Fachhochschule Wiesbaden and Schott Glas, Mainz 1982)

    Google Scholar 

  128. L.S. Jovanovic, J.D. Fišl, F.F. Gaál: “Differential Potentiometric titrations of binary mixtures of halides with two ion-selective indicator electrodes”, Anal. Chim. Acta 120, 81–92 (1980)

    Google Scholar 

  129. E. Pungor: “Theory and application of anion-selective membrane electrodes”, Anal. Chem. 39, 28A–45A (1967)

    Google Scholar 

  130. L.G. Sillén, A.E. Martell: Stability Constants of Metal-Ion Complexes (Chem. Soc, London 1964) pp. 286–288, 323–324, 338–339 (special publ. No. 17)

    Google Scholar 

  131. R. Bock, H.-J. Puff: “Bestimmung von Sulfid mit einer Sulfidionen-empfindlichen Elektrode”, Z. Anal. Chem. 240, 381–386 (1968)

    Google Scholar 

  132. B.E. Conway: Elektrochemische Tabellen (Govi, Frankfurt/Main 1957) p. 314

    Google Scholar 

  133. E. Guadagnino, G.C. De Diana, G. Rizzo: “Determination of mercury in glass: A new analytical need in the evaluation of the packaging waste quality”, Glastechn. Ber. 66, 100–104 (1993)

    Google Scholar 

  134. R. Dobrowolski, J. Mierzwa: “Determination of mercury in fluorescent lamp cullet by atomic absorption spectrometry”, Analyst 117 (7), 1165–1167 (1992)

    ADS  Google Scholar 

  135. S.R. Aston, J.P. Riley: “The determination of mercury in rock and sediments”, Anal. Chim. Acta 59, 349–354 (1972)

    Google Scholar 

  136. G. Bachmann, W. Rechenberg: “Aufschluß von Silikaten für die atomspek-trometrische Quecksilber-Bestimmung”, Fresenius’ J. Anal. Chem 355, 457–460 (1996)

    Google Scholar 

  137. B. Welz, M. Schubert-Jacobs: “Cold vapor atomic absorption spectrometric determination of mercury using sodiumtetrahydraborate-reduction and collecting on gold”, Fresenius Z. Anal. Chem 331, 324–329 (1988)

    Google Scholar 

  138. Schott Glas: “Quecksilberbestimmung mittels Kaltdampf-AAS nach vorheriger Anreicherung am Goldnetz in Wasser/Abwasser”, operating instruction AAW, FEA-3–8047 (Mainz 1993)

    Google Scholar 

  139. R. Brückner, H. Hessenkemper: “Influence of water content and basicity on redox ratio-consequences on radiation heat absorption and emission of glass melts during fining and processing”, Glastechn. Ber. 66, 245–253 (1993)

    Google Scholar 

  140. C.R. Kurkjian, L.E. Russel: “Solubility of water in molten silicates”, J. Soc. Glass Technol. 42, 130T–144T (1958)

    Google Scholar 

  141. H. Scholze: “Der Einbau des Wassers in Gläsern. Teil II”, Glastechn. Ber. 32, 142–152 (1959)

    Google Scholar 

  142. H. Scholze: “Der Einbau des Wassers in Gläsern. Teil I”, Glastechn. Ber. 32, 81–88 (1959)

    Google Scholar 

  143. A. Jacobsen, N. Neuroth, F. Reitmayer: “Absorption and scattering losses in glasses and fibers for light guidance”, J. Am. Ceram. Soc. 54, 186–187 (1971)

    Google Scholar 

  144. O. Humbach, H. Fabian, U. Grzesik, U. Haken, W. Heitmann: “Analysis of OH absorption bands in synthetic silica”, J. Non-Cryst. Solids 203, 19–26 (1996)

    ADS  Google Scholar 

  145. J. Stone, G.E. Walrafen: “Overtone vibrations of OH groups in fused silica optical fibers”, J. Chem. Phys. 76, 1712–1722

    Google Scholar 

  146. D.B. Keck, R.D. Maurer, R.C. Schultz: “On the ultimate lower limit of attenuation in glass optical waveguides”, Appl. Phys. Lett. 22(7), 307–309 (1973)

    ADS  Google Scholar 

  147. J. Götz, E. Vasahlova: “Beitrag zur quantitativen Bestimmung des Wassergehalts in Glas mit Hilfe der infraroten OH-Banden”, Glastechn. Ber. 41, 47–55 (1968)

    Google Scholar 

  148. J.P. Williams, Y.-S. Su, W.R. Strzegowski, B.L. Butler: “Direct determination of water in glass”, Am. Ceram. Soc. Bull. 55, 524–527 (1976)

    Google Scholar 

  149. H. Ebendorff-Heidepriem, D. Ehrt: “Determination of the OH content of glasses”, Glastechn. Ber. Glass Sci. Technol. 68, 139–146 (1995)

    Google Scholar 

  150. F. Geotti-Bianchini, L. de Riu: “Infrared spectroscopic analysis of water incorporated in the structure of industrial soda-lime-silica glasses”, Glastechn. Ber. Glass Sci. Technol. 68, 228–240 (1995)

    Google Scholar 

  151. F. Geotti-Bianchini, H. Geißler, F. Krämer: “Recommended procedure for the IR spectroscopic determination of water in soda-lime silica glass”, Report of ICG Technical Committee 14 “Gases in Glass”, Glastechn. Ber. Glass Sci. Technol. 72, 103–111 (1999)

    Google Scholar 

  152. K.M. Davis, A. Agarwal, M. Tomozawa, K. Hirao: “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass”, J. Non-Cryst. Solids 203, 27–36 (1996)

    ADS  Google Scholar 

  153. G. Hetherington, K.H. Jack: “Water in vitreous silica. Part 1”, Phys. Chem. Glasses 3, 129–133 (1962)

    Google Scholar 

  154. H. Franz, H. Scholze: “Die Löslichkeit von H2O-Dampf in Glasschmelzen verschiedener Basizität”, Glastechn. Ber. 36, 347–356 (1963)

    Google Scholar 

  155. J.E. Shelby, J. Vitko, R.E. Benner: “Quantitative determination of the hydroxyl content of vitreous silica”, Commun. Am. Ceram. Soc. 65, C59–C60 (1982)

    Google Scholar 

  156. W. Müller-Warmuth, G.W. Schulz, N. Neuroth, F. Meyer, E. Deeg: “Protonen in Gläsern”, Z. Naturforschung 20a, 902–917 (1965)

    ADS  Google Scholar 

  157. F. Meyer, W. Spalthoff: “Ermittlung des Wassergehaltes in Gläsern mit Hilfe der magnetischen Kernresonanz und Vergleich der Ergebnisse mit Messungen der infraroten OH-Banden”, Glastechn. Ber. 34, 184–191 (1961)

    Google Scholar 

  158. M.F. Hammer, A. Beran, D. Endisch, F. Rauch: “OH concentrations in natural titanites determined by FTIR spectroscopy and nuclear reaction analysis”, Europ. J. Mineral. 8, 281–288 (1996)

    Google Scholar 

  159. F.W. Krämer, R. Haspel, C. Ottermann, S. Ilievski, M. Laube, F. Rauch: “Praktischer IR-Extinktionskoeffizient für Wasser in technischen Gläsern”, in Proc. 71. Glastechn. Tagung, Bayreuth 1997 (Deutsche Glastechnische Gesellschaft, Frankfurt/Main 1997) pp. 239–242

    Google Scholar 

  160. D.M. Roy, S.P. Faile, O.F. Tuttle: “Effect of large concentrations of dissolved gas on properties of glasses”, Phys. Chem. Glasses 5, 176–177 (1964)

    Google Scholar 

  161. J.M. Jewell, J.E. Shelby: “Effect of water content and alumina additions on the transformation range, properties of Na2O-3SiO2 glasses”, J. Non-Cryst. Solids 102, 24–29 (1988)

    ADS  Google Scholar 

  162. G.H. Frischat, C. Schrimpf: “Preparation of nitrogen-containing Na2O-CaO-SiO2 glasses”, J. Am. Ceram. Soc. 63, 715 (1980)

    Google Scholar 

  163. N. Belkhiria, L.D. Pye: “The effect of the oxidation state of iron on the properties of Na2O-2B2O3 glasses”, in Proc. XIV. Int. Congress Glass, New Delhi, Vol. 1 (Indian Ceram. Soc, Calcutta 1986) pp. 155–163

    Google Scholar 

  164. R. Brückner: “Properties and structure of vitreous silica”, J. Non-Cryst. Solids 5, 123–175 (1970)

    ADS  Google Scholar 

  165. J. Dietrichs, G.H. Frischat: “Properties of Metallic Glasses in the System Pd-Ni-P and in Related Systems”, J. Am. Ceram. Soc. 67, C233–C235 (1984)

    Google Scholar 

  166. TNO Report HAM-RPT 9577: “Redox reactions and properties of gases in glass melts” (TNO Institute of Applied Physics, Eindhoven 1996), Final Report NCNG-Nov.

    Google Scholar 

  167. L. Nemec, J. Ullrich: “Calculation of interactions of gas bubbles with glass liquids containing sulphates”, J. Non-Cryst. Solids 238, 98–114 (1998)

    ADS  Google Scholar 

  168. F.W. Krämer: “Solubility of gases in glass melts”, Ber. Bunsen Ges. Phys. Chem. 100, 1512–1514 (1996)

    Google Scholar 

  169. F. Krämer, H.O. Mulfinger: “Solubility and diffusivity measurements of water in a television tube glass”, Rivista Staz. Sper. Vetro 5, 39–42 (1984)

    Google Scholar 

  170. S. Nakajima, S. Takeshita, C.Tanaka: “Refining of a soda-lime glass under subatmospheric pressures”, Rep. Res. Lab. Asahi Glass 41 (2), 167–173 (1991)

    Google Scholar 

  171. L. Nemec, M. Mühlbauer: “Verhalten von Gasblasen in der Glasschmelze bei konstanter Temperatur”, Glastechn. Ber. 54, 99–108 (1981)

    Google Scholar 

  172. F.W. Krämer; R. Haspel, C. Ottermann, S. Ilievski, M. Laube, F. Rauch: “Praktischer IR-ExtinktionskoefEzient für Wasser in technischen Gläsern”, in Proc. 71. Glastechn. Tagung, Bayreuth 1997 (Deutsche Glastechnische Gesellschaft, Frankfurt/Main 1997) pp. 239–242

    Google Scholar 

  173. TNO Report HAM-RPT 97428: “Analysis of dissolved gases in Schott glass samples” (TNO Institute of Applied Physics, Eindhoven 1997)

    Google Scholar 

  174. Schott Glas: Internal reports (Mainz)

    Google Scholar 

  175. L. Meckel: “Analytical investigation of dust, sludge and waste water specimens from the production facilities of a special glass manufacturer”, Glastechn. Ber. 62, 106–109 (1989)

    Google Scholar 

  176. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlamm-Untersuchung (Wiley-VCH, Weinheim; Beuth, Berlin 1998)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meckel, L. et al. (1999). The Chemical Analysis of Glasses, Glass Ceramics, and Related Materials. In: Bach, H., Krause, D. (eds) Analysis of the Composition and Structure of Glass and Glass Ceramics. Schott Series on Glass and Glass Ceramics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03746-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03746-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08207-8

  • Online ISBN: 978-3-662-03746-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics