Skip to main content

Nutrient Limitation and Bacteria — Phytoplankton Interactions in Humic Lakes

  • Chapter
Aquatic Humic Substances

Part of the book series: Ecological Studies ((ECOLSTUD,volume 133))

Abstract

In most lakes, nutrient limitation is synonymous with P-limitation. Low concentrations of P restrict the productivity of freshwater organisms and freshwater ecosystems, a fact that has been stressed over the years by algal physiologists (Beijerinck 1890; Pringsheim 1912; Tilman et al. 1982) and limnologists (Rodhe 1948; Vollenweider 1968; Sakamoto 1966; Schindler 1977). Although other elements than P sometimes may limit the growth of certain members of the phytoplankton, i.e. Si for diatoms (Tilman et al.1982), Se for Peridinium cinctum (Lindström and Rodhe 1978) and N for cyanobacteria (Schindler 1977), the role of P as the key limiting inorganic nutrient for the productivity of freshwater ecosystems is today accepted and little questioned (Shapiro 1988). The convincing results of P addition to whole lakes in the Experimental Lakes Area in Canada in the 1970s (Schindler 1977) put an end to the discussion about nutrient limitation in lakes for some decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arvola L (1984) Vertical distribution of primary production and phytoplankton in two small lakes with different humic concentration. Holarct Ecol 7: 390–398

    CAS  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10: 257–263

    Article  Google Scholar 

  • Beijerinck MW (1890) Kulturversuche mit Zoochlorellen, Lichenogonidien and anderen Algen. Bot Ztg 48:725–739, 741–754, 757–768, 781–785

    Google Scholar 

  • Blomqvist P, Heyman U, Grundström R (1981) The structure of the pelagic ecosystem in L. Siggeforasjön. Scr Limnol Ups Coll 18, Scr A22

    Google Scholar 

  • Blomqvist P, Pettersson A, Hyenstrand P (1994) Ammonium-nitrogen: a key regulatory factor causing dominance of non-nitrogen fixing cyanobacteria in aquatic systems. Arch Hydrobiol 132: 141–164

    CAS  Google Scholar 

  • Boraas ME, Estep KW, Johnsson PW, Sieburth JM (1988) Phagotrophic phototrophs: the ecological significance of mixotrophy. J Protozol 35: 249–252

    Google Scholar 

  • Carlsson P, Segatto AZ, Granéli E (1993) Nitrogen bound to humic matter of terrestrial origin–a nitrogen pool for coastal phytoplankton? Mar Ecol Prog Ser 97: 105–116

    Article  CAS  Google Scholar 

  • Caron DA, Porter KG, Sanders RW (1990) Carbon, nitrogen and phosphorus budgets for the mixotrophic phytoplagellate Poterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnol Oceanogr 35: 433–442

    Article  CAS  Google Scholar 

  • Cembella AD, Antia NJ, Harrison PJ (1984) The utilization of inorganic and organic phosphorus compounds as nutrients by eukariotic microalgae: a multidisciplinary perspective. Part 1 Crit Rev Microbiol 10: 317–391

    Article  CAS  Google Scholar 

  • Currie DJ (1990) Large scale variability and interactions among phytoplankton, bacterioplankton and phosphorus. Limnol Oceanogr 35: 1437–1455

    Article  Google Scholar 

  • Currie DJ, Kalff J (1984a) A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol Oceanogr 29: 298–310

    Article  CAS  Google Scholar 

  • Currie DJ, Kalff J (1984b) The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol Oceanogr 29: 311–321

    Article  CAS  Google Scholar 

  • Currie DJ, Kalif J (1984c) Can bacteria outcompete phytoplankton for phosphorus? A chemostat test. Microb Ecol 10: 205–216

    Article  CAS  Google Scholar 

  • DeHaan HR, Jones R, Salonen K (1990) Abiotic transformations of iron and phosphates in humic lake water, revealed by double isotope labelling and gel filtration. Limnol Oceanogr 35: 491–497

    Article  CAS  Google Scholar 

  • delGiorgio PA, Peters RH (1993) Balance between phytoplankton production and plankton respiration in lakes. Can J Fish Aquat Sci 50: 282–289

    Article  Google Scholar 

  • Guildford SJ, Healey FP, Hecky RE (1987) Depression of primary production by humic matter and suspended sediments in limnocorral experiments in Southern Indian Lake, northern Manitoba. Can J Fish Aquat Sci 4: 1408–1417

    Article  Google Scholar 

  • Hessen DO (1992) Dissolved organic carbon in a humic lake: effects on bacterial production and respiration. Hydrobiologia 229: 115–123

    Article  CAS  Google Scholar 

  • Hessen DO, Nygaard K, Salonen K, Vähätalo A (1994) The effect of substrate stoichiometry on microbial activity and carbon degradation in humic lakes. Environm Int 20: 67–76

    Article  CAS  Google Scholar 

  • Heyman U (1983) Relation between production and biomass of phytoplankton in four Swedish lakes of different trophic status and humic content. Hydrobiologia 101: 71–88

    Article  Google Scholar 

  • Heyman U, Lundgren A (1988) Phytoplankton biomass and production in relation to phosphorus: some conclusions from field studies. Hydrobiologia 170: 211–228

    Article  CAS  Google Scholar 

  • Jansson M (1988) Phosphate uptake and utilization by bacteria and algae. Hydrobiologia 170: 177–190

    Article  CAS  Google Scholar 

  • Jansson M (1993) Uptake, exchange and excretion of orthophosphate in phosphate starved Scenedesmus quadricauda and Pseudomonas K7. Limnol Oceanogr 38: 1162–1178

    Article  CAS  Google Scholar 

  • Jansson M, Blomqvist P, Jonsson A, Bergström A-K (1996) Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket, a large humic lake in northern Sweden. Limnol Oceanogr 41: 1552–1559

    Article  CAS  Google Scholar 

  • Johansson JA (1983) Seasonal development of bacterioplankton in two forest lakes in central Sweden. Hydrobiologia 101: 71–88

    Article  Google Scholar 

  • Jones RI (1990) Phosphorus transformations in the epilimnion of humic lakes: biological uptake of phosphate. Freshw Biol 23: 323–337

    Article  CAS  Google Scholar 

  • Jones RI (1992) The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229: 73–91

    Article  CAS  Google Scholar 

  • Jones RI (1994) Mixotrophy in planktonic protists as a spectrum of nutritional strategies. Mar Microb Food Webs 8: 87–96

    Google Scholar 

  • Kirchman DL (1994) The uptake of inorganic nutrients by heterotrophic bacteria. Microb Ecol 28: 255–271.

    Article  CAS  Google Scholar 

  • Lindell M, Graneli W, Tranvik L (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40: 195–199

    Article  Google Scholar 

  • Lindström K, Rodhe W (1978) Selenium as a micronutrient for the dinoflagellate Peridinium cinctum fa.westii. Mitt Int Verein Limnol 21: 168–173

    Google Scholar 

  • Moran MA, Hodson RE (1990) Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol Oceanogr 35: 1744–1756

    Article  CAS  Google Scholar 

  • Ohle W (1935) Organische Kolloide in ihrer Wirkung auf dem Stoffhaushalt der gewässer. Naturwissenschaften 23: 480–484

    Article  CAS  Google Scholar 

  • Porter KG (1988) Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159: 89–97

    Article  Google Scholar 

  • Pringsheim EG (1963) Farblose Algen: Ein Beitrag zur Evolutionsforshung. Fischer.

    Google Scholar 

  • Ramberg L (1979) Relationships between phytoplankton and light climate in two Swedish forest lakes. Int Rev Gesamten Hydrobiol 64: 749–782

    Article  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46: 205–221

    CAS  Google Scholar 

  • Rodhe W (1948) Environmental requirements of freshwater planktonic algae. Symb Bot Ups 10 (1), 149 pp

    Google Scholar 

  • Rothaupt KO (1992) Stimulation of phosphorus-limited phytoplankton by bacterivorous flagellates in laboratory experiments. Limnol Oceanogr 37: 750–759

    Article  Google Scholar 

  • Rothaupt KO, Glide H (1992) The influence of spatial and temporal concentration gradients on phosphate partitioning between different size fractions of plankton: further evidence and possible causes. Limnol Oceanogr 37: 739–749

    Article  Google Scholar 

  • Sanders RW, Porter KG (1988) Phagotrophic phytoflagellates. Adv Microb Ecol 10: 167–192

    Article  Google Scholar 

  • Sakamoto M (1966) Primary production of phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch Hydrobiol 62: 1–28

    Google Scholar 

  • Salonen K, Jokinen S (1988) Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161: 203–209

    Article  Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195: 260–262

    Article  PubMed  CAS  Google Scholar 

  • Shapiro J (1988) Introductory lecture at the international symposium “Phosphorus in Freshwater Ecosystems”, Uppsala, Sweden in October 1985. Hydrobiologia 170: 9–17

    Article  CAS  Google Scholar 

  • Skuja H (1948) Taxonomie des Phytoplanktons einiger Seen in Uppland. Schweden. Symb Bot Ups 9 (3): 1–399.

    Google Scholar 

  • Skuja H (1956) Taxonomische and biologische Studien über das Phytoplankton schwedische Binnengewässer. Nova Acta Reg Soc Sci Uppsal. 16 (3): 1–404

    Google Scholar 

  • Sterner RW (1989) N:P resupply by herbivores: zooplankton and the algal competitive arena. Am Nat 136: 209–229

    Article  Google Scholar 

  • Stewart AJ, Wetzel RG (1982) Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshwat. Biol. 12: 369–380

    Article  CAS  Google Scholar 

  • Stockner JG (1991) Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int Rev Gesamten Hydrobiol 76: 483–492

    Article  Google Scholar 

  • Tilman DS (1977) Resource competition between planktonic algae: an experimental and theoretical study. Ecology 58: 338–348

    Article  CAS  Google Scholar 

  • Tilman DS, Kilham S, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13: 349–372

    Article  Google Scholar 

  • Tipping E (1981) The adsorption of aquatic humic substances by iron oxides. Geochim Cosmochim Acta 45: 191–199

    Article  CAS  Google Scholar 

  • Tranvik LJ (1988) Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of different humic content. Microb Ecol 16: 311–322

    Article  CAS  Google Scholar 

  • Tranvik LJ (1989) Bacterioplankton growth, grazing mortality and quantitative relationship to primary production in a humic and a clearwater lake. J Plankton Res 11: 985–1000

    Article  Google Scholar 

  • Tranvik LJ, Porter KG, Sieburth JMcN (1989) Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankter. Oecologia 78: 473–476

    Article  Google Scholar 

  • Vadstein O, Jensen A, Olsen Y, Reinertsen H (1988) Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol Oceanogr 33: 489–503

    Article  CAS  Google Scholar 

  • Vollenweider RA (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD, DAS/CSI/68.27, Paris, 274 pp

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jansson, M. (1998). Nutrient Limitation and Bacteria — Phytoplankton Interactions in Humic Lakes. In: Hessen, D.O., Tranvik, L.J. (eds) Aquatic Humic Substances. Ecological Studies, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03736-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03736-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08362-4

  • Online ISBN: 978-3-662-03736-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics