Nutrient Limitation and Bacteria — Phytoplankton Interactions in Humic Lakes

  • Mats Jansson
Part of the Ecological Studies book series (ECOLSTUD, volume 133)


In most lakes, nutrient limitation is synonymous with P-limitation. Low concentrations of P restrict the productivity of freshwater organisms and freshwater ecosystems, a fact that has been stressed over the years by algal physiologists (Beijerinck 1890; Pringsheim 1912; Tilman et al. 1982) and limnologists (Rodhe 1948; Vollenweider 1968; Sakamoto 1966; Schindler 1977). Although other elements than P sometimes may limit the growth of certain members of the phytoplankton, i.e. Si for diatoms (Tilman et al.1982), Se for Peridinium cinctum (Lindström and Rodhe 1978) and N for cyanobacteria (Schindler 1977), the role of P as the key limiting inorganic nutrient for the productivity of freshwater ecosystems is today accepted and little questioned (Shapiro 1988). The convincing results of P addition to whole lakes in the Experimental Lakes Area in Canada in the 1970s (Schindler 1977) put an end to the discussion about nutrient limitation in lakes for some decades.


Humic Substance Phytoplankton Biomass Dissolve Organic Nitrogen Bacterial Production Nutrient Limitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arvola L (1984) Vertical distribution of primary production and phytoplankton in two small lakes with different humic concentration. Holarct Ecol 7: 390–398Google Scholar
  2. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10: 257–263CrossRefGoogle Scholar
  3. Beijerinck MW (1890) Kulturversuche mit Zoochlorellen, Lichenogonidien and anderen Algen. Bot Ztg 48:725–739, 741–754, 757–768, 781–785Google Scholar
  4. Blomqvist P, Heyman U, Grundström R (1981) The structure of the pelagic ecosystem in L. Siggeforasjön. Scr Limnol Ups Coll 18, Scr A22Google Scholar
  5. Blomqvist P, Pettersson A, Hyenstrand P (1994) Ammonium-nitrogen: a key regulatory factor causing dominance of non-nitrogen fixing cyanobacteria in aquatic systems. Arch Hydrobiol 132: 141–164Google Scholar
  6. Boraas ME, Estep KW, Johnsson PW, Sieburth JM (1988) Phagotrophic phototrophs: the ecological significance of mixotrophy. J Protozol 35: 249–252Google Scholar
  7. Carlsson P, Segatto AZ, Granéli E (1993) Nitrogen bound to humic matter of terrestrial origin–a nitrogen pool for coastal phytoplankton? Mar Ecol Prog Ser 97: 105–116CrossRefGoogle Scholar
  8. Caron DA, Porter KG, Sanders RW (1990) Carbon, nitrogen and phosphorus budgets for the mixotrophic phytoplagellate Poterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnol Oceanogr 35: 433–442CrossRefGoogle Scholar
  9. Cembella AD, Antia NJ, Harrison PJ (1984) The utilization of inorganic and organic phosphorus compounds as nutrients by eukariotic microalgae: a multidisciplinary perspective. Part 1 Crit Rev Microbiol 10: 317–391CrossRefGoogle Scholar
  10. Currie DJ (1990) Large scale variability and interactions among phytoplankton, bacterioplankton and phosphorus. Limnol Oceanogr 35: 1437–1455CrossRefGoogle Scholar
  11. Currie DJ, Kalff J (1984a) A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol Oceanogr 29: 298–310CrossRefGoogle Scholar
  12. Currie DJ, Kalff J (1984b) The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol Oceanogr 29: 311–321CrossRefGoogle Scholar
  13. Currie DJ, Kalif J (1984c) Can bacteria outcompete phytoplankton for phosphorus? A chemostat test. Microb Ecol 10: 205–216CrossRefGoogle Scholar
  14. DeHaan HR, Jones R, Salonen K (1990) Abiotic transformations of iron and phosphates in humic lake water, revealed by double isotope labelling and gel filtration. Limnol Oceanogr 35: 491–497CrossRefGoogle Scholar
  15. delGiorgio PA, Peters RH (1993) Balance between phytoplankton production and plankton respiration in lakes. Can J Fish Aquat Sci 50: 282–289CrossRefGoogle Scholar
  16. Guildford SJ, Healey FP, Hecky RE (1987) Depression of primary production by humic matter and suspended sediments in limnocorral experiments in Southern Indian Lake, northern Manitoba. Can J Fish Aquat Sci 4: 1408–1417CrossRefGoogle Scholar
  17. Hessen DO (1992) Dissolved organic carbon in a humic lake: effects on bacterial production and respiration. Hydrobiologia 229: 115–123CrossRefGoogle Scholar
  18. Hessen DO, Nygaard K, Salonen K, Vähätalo A (1994) The effect of substrate stoichiometry on microbial activity and carbon degradation in humic lakes. Environm Int 20: 67–76CrossRefGoogle Scholar
  19. Heyman U (1983) Relation between production and biomass of phytoplankton in four Swedish lakes of different trophic status and humic content. Hydrobiologia 101: 71–88CrossRefGoogle Scholar
  20. Heyman U, Lundgren A (1988) Phytoplankton biomass and production in relation to phosphorus: some conclusions from field studies. Hydrobiologia 170: 211–228CrossRefGoogle Scholar
  21. Jansson M (1988) Phosphate uptake and utilization by bacteria and algae. Hydrobiologia 170: 177–190CrossRefGoogle Scholar
  22. Jansson M (1993) Uptake, exchange and excretion of orthophosphate in phosphate starved Scenedesmus quadricauda and Pseudomonas K7. Limnol Oceanogr 38: 1162–1178CrossRefGoogle Scholar
  23. Jansson M, Blomqvist P, Jonsson A, Bergström A-K (1996) Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket, a large humic lake in northern Sweden. Limnol Oceanogr 41: 1552–1559CrossRefGoogle Scholar
  24. Johansson JA (1983) Seasonal development of bacterioplankton in two forest lakes in central Sweden. Hydrobiologia 101: 71–88CrossRefGoogle Scholar
  25. Jones RI (1990) Phosphorus transformations in the epilimnion of humic lakes: biological uptake of phosphate. Freshw Biol 23: 323–337CrossRefGoogle Scholar
  26. Jones RI (1992) The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229: 73–91CrossRefGoogle Scholar
  27. Jones RI (1994) Mixotrophy in planktonic protists as a spectrum of nutritional strategies. Mar Microb Food Webs 8: 87–96Google Scholar
  28. Kirchman DL (1994) The uptake of inorganic nutrients by heterotrophic bacteria. Microb Ecol 28: 255–271.CrossRefGoogle Scholar
  29. Lindell M, Graneli W, Tranvik L (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40: 195–199CrossRefGoogle Scholar
  30. Lindström K, Rodhe W (1978) Selenium as a micronutrient for the dinoflagellate Peridinium cinctum fa.westii. Mitt Int Verein Limnol 21: 168–173Google Scholar
  31. Moran MA, Hodson RE (1990) Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol Oceanogr 35: 1744–1756CrossRefGoogle Scholar
  32. Ohle W (1935) Organische Kolloide in ihrer Wirkung auf dem Stoffhaushalt der gewässer. Naturwissenschaften 23: 480–484CrossRefGoogle Scholar
  33. Porter KG (1988) Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159: 89–97CrossRefGoogle Scholar
  34. Pringsheim EG (1963) Farblose Algen: Ein Beitrag zur Evolutionsforshung. Fischer.Google Scholar
  35. Ramberg L (1979) Relationships between phytoplankton and light climate in two Swedish forest lakes. Int Rev Gesamten Hydrobiol 64: 749–782CrossRefGoogle Scholar
  36. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46: 205–221Google Scholar
  37. Rodhe W (1948) Environmental requirements of freshwater planktonic algae. Symb Bot Ups 10 (1), 149 ppGoogle Scholar
  38. Rothaupt KO (1992) Stimulation of phosphorus-limited phytoplankton by bacterivorous flagellates in laboratory experiments. Limnol Oceanogr 37: 750–759CrossRefGoogle Scholar
  39. Rothaupt KO, Glide H (1992) The influence of spatial and temporal concentration gradients on phosphate partitioning between different size fractions of plankton: further evidence and possible causes. Limnol Oceanogr 37: 739–749CrossRefGoogle Scholar
  40. Sanders RW, Porter KG (1988) Phagotrophic phytoflagellates. Adv Microb Ecol 10: 167–192CrossRefGoogle Scholar
  41. Sakamoto M (1966) Primary production of phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch Hydrobiol 62: 1–28Google Scholar
  42. Salonen K, Jokinen S (1988) Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161: 203–209CrossRefGoogle Scholar
  43. Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195: 260–262PubMedCrossRefGoogle Scholar
  44. Shapiro J (1988) Introductory lecture at the international symposium “Phosphorus in Freshwater Ecosystems”, Uppsala, Sweden in October 1985. Hydrobiologia 170: 9–17CrossRefGoogle Scholar
  45. Skuja H (1948) Taxonomie des Phytoplanktons einiger Seen in Uppland. Schweden. Symb Bot Ups 9 (3): 1–399.Google Scholar
  46. Skuja H (1956) Taxonomische and biologische Studien über das Phytoplankton schwedische Binnengewässer. Nova Acta Reg Soc Sci Uppsal. 16 (3): 1–404Google Scholar
  47. Sterner RW (1989) N:P resupply by herbivores: zooplankton and the algal competitive arena. Am Nat 136: 209–229CrossRefGoogle Scholar
  48. Stewart AJ, Wetzel RG (1982) Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshwat. Biol. 12: 369–380CrossRefGoogle Scholar
  49. Stockner JG (1991) Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int Rev Gesamten Hydrobiol 76: 483–492CrossRefGoogle Scholar
  50. Tilman DS (1977) Resource competition between planktonic algae: an experimental and theoretical study. Ecology 58: 338–348CrossRefGoogle Scholar
  51. Tilman DS, Kilham S, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13: 349–372CrossRefGoogle Scholar
  52. Tipping E (1981) The adsorption of aquatic humic substances by iron oxides. Geochim Cosmochim Acta 45: 191–199CrossRefGoogle Scholar
  53. Tranvik LJ (1988) Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of different humic content. Microb Ecol 16: 311–322CrossRefGoogle Scholar
  54. Tranvik LJ (1989) Bacterioplankton growth, grazing mortality and quantitative relationship to primary production in a humic and a clearwater lake. J Plankton Res 11: 985–1000CrossRefGoogle Scholar
  55. Tranvik LJ, Porter KG, Sieburth JMcN (1989) Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankter. Oecologia 78: 473–476CrossRefGoogle Scholar
  56. Vadstein O, Jensen A, Olsen Y, Reinertsen H (1988) Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol Oceanogr 33: 489–503CrossRefGoogle Scholar
  57. Vollenweider RA (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD, DAS/CSI/68.27, Paris, 274 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Mats Jansson

There are no affiliations available

Personalised recommendations