Skip to main content

Humus and Acidification

  • Chapter
Aquatic Humic Substances

Part of the book series: Ecological Studies ((ECOLSTUD,volume 133))

Abstract

Soil humus may be defined as the product of transformation of plant and animal remains which bear no morphological resemblances to the materials from which they were derived (Kononova 1975; Hayes and Swift 1978). The predominant part of organic material in surface waters is normally allochthonously derived. The material is produced within the catchment and brought to the lakes and rivers by runoff in countless numbers of physicochemical forms (e.g. Felbeck 1971; Heyes 1991). Types of degradation products as well as the time needed to fully decompose organic matter are extremely variable, depending on the chemical composition of the original material as well on several site-specific physical, chemical and biological factors such as the redox potential (i.e. the oxygen conditions and gas exchange), the biological degradation activity, the hydrological conditions, pH and temperature. Accordingly, it is not surprising to find a river carrying relatively fresh lignin and cellulose from newly fallen debris, as well as series of degradation products derived from these substances where they have been exposed to biochemical decomposition over extended periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken GR (1988) A critical evaluation of the use of macroporous resins for the isolation of aquatic humic substances. In: Frimmel FH Christman RF (eds) Humic substances and their role in the environment. Wiley, New York, pp 15–28

    Google Scholar 

  • Almer B, Dickson W, Ekström C, Hornström E, Miller U (1974) Effects of acidification of Swedish lakes. Ambio 3: 30–36

    Google Scholar 

  • Baker JP, Schofield CL (1980) Aluminium toxicity to fish related to acid precipitation and Adirondack surface water quality. In: Drabloes D Tollan A (eds) Ecological impacts of acid precipitation, SNSF-project. Proc Int Conf Sandefjord, Norway. Grefslie Ltd, Mysen, pp 292–293

    Google Scholar 

  • Baker JP, Schofield CL (1982) Aluminium toxicity to fish in acidic waters. Water Air Soil Pollut 18: 289–309

    Article  CAS  Google Scholar 

  • Baker JP, Gherini SA, Christensen SW, Driscoll CT, Gallagher J, Munson RK, Newton RM, Reck-how KH, Schofield CL (1990) Adirondack lakes survey: interpretive report, Adirondack Lakes Survey, Ray Brook, New York

    Google Scholar 

  • Beck KC, Reuter JH, Perdue EM (1974) Organic and inorganic geochemistry of some coastal plain rivers of southeastern United States. Geochim Cosmochim Acta 38: 341–364

    Article  CAS  Google Scholar 

  • Biesinger KE, Stokes GN (1986). Effects of synthetic polyelectrolytes on selected aquatic organisms. J Water Pollut Contam Fed 58: 207–213

    CAS  Google Scholar 

  • Bolt GH (1979) Soil chemistry. B. Physico-chemical models. Developments in soil science, vol 5B. Elsevier, Amsterdam

    Google Scholar 

  • Boyd GE (1970) Thermal effects in ion-exchange reactions with organic exchangers: Enthalpy and heat capacity changes. In: Hall GR (ed) Ion exchange in the process industries. Conf at Imperial College of Science and Technology, London, 16–18 July 1969. Society of Chemical Industry, London, pp 261–269

    Google Scholar 

  • Burton TM, Allan JW (1986) Influence of pH, aluminium, and organic matter on stream invertebrates. Can J Fish Aquat Sci 43: 1285–1289

    Article  CAS  Google Scholar 

  • Christophersen N, Stuanes AO, Wright RF (1982) Runoff chemistry at a mini-catchment watered with “unpolluted precipitation”. Nord Hydrol 13: 115–128

    CAS  Google Scholar 

  • Clamp JR, Allen A, Gibbons RA, Roberts GP (1978) Chemical aspects of mucus. Br Med Bull 34: 25–41

    PubMed  CAS  Google Scholar 

  • Clark KL, Hall RJ (1985) Effects of elevated hydrogen ion and aluminium concentrations on the survival of amphibian embryos and larvae. Can J Zoo! 63: 116–123

    Article  CAS  Google Scholar 

  • Clark KL, LaZerte BD (1985) A laboratory study of the effects of aluminium and pH on amphibian eggs and tadpoles. Can J Fish Aquat Sci 42: 1544–1551

    Article  CAS  Google Scholar 

  • Correa M, Coler RA, Yin C-M, Venables BJ (1985) The impact of depressed pH and elevated aluminium concentrations on specific dynamic action in Somatochlora cingulata ( De Selys ). Comp Biochem Physiol [Cl 82: 199–201

    Google Scholar 

  • Cronan CS, Aiken GR (1985) Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York. Geochim Cosmochim Acta 49: 1697–1705

    Google Scholar 

  • Cronan CS Schofield CL (1979) Aluminium leaching response to acid precipitation: effects on high-elevation watersheds in the northeast. Science 204: 304–306

    Article  PubMed  Google Scholar 

  • Cummins CP (1986) Effects of aluminium and low pH on growth and development in Rana temporaria tadpoles. Oecologia 69: 248–252

    Article  Google Scholar 

  • Davis RB, Anderson DS, Berge F (1985) Palaeolimnological evidence that lake acidification is accompanied by loss of organic matter. Nature 316: 436–438

    Article  CAS  Google Scholar 

  • Dempsey BA O’Melia CR (1983) Proton and calcium complexation of four fulvic acid fractions.

    Google Scholar 

  • In: Christman RF Gjessing ET (eds). Aquatic and terrestrial humic materials. Ann Arbor Sci, Michigan, pp 239–274

    Google Scholar 

  • Dickinson Burrows W (1977) Aquatic aluminium: chemistry, toxicology, and environmental prevalence. CRC Crit Rev Environm Control, vol 7, pp 167–216

    Google Scholar 

  • Dickson W (1978) Some effects of the acidification of Swedish lakes. Verh Int Verein Limnol 20: 851–856

    Google Scholar 

  • Dickson, W (1980) Properties of acidified waters. In: Drabloes D Tollan A (eds.), Ecological impacts of acid precipitation, SNSF-project. Proc Int Conf Sandefjord, Norway. Grefslie Ltd, My-sen, pp 75–83

    Google Scholar 

  • Driscoll CT (1984) A procedure for the fractionation of aqueous aluminium in dilute acidic water. Int J Environ Anal Chem 16: 267–283

    Article  CAS  Google Scholar 

  • Driscoll CT, Baker JP Jr, Bisogni JJ, Schofield CL (1980) Effects of aluminium speciation on fish in dilute acidified waters. Nature 284: 161–164

    Article  CAS  Google Scholar 

  • Driscoll CT, Lehtinen MD, Sullivan TJ (1994) Modeling the acid-base chemistry of organic solutes in Adirondack, New York, lakes. Water Resour Res 30: 297–306

    Google Scholar 

  • Eary LE, Jenne EA, Vail LW, Girvin, DC (1989) Numerical models for predicting watershed acidification. Arch Environ Contam Toxicol 18: 29–53

    Article  CAS  Google Scholar 

  • Easthouse KB, Mulder J, Christophersen N, Seip HM (1992) Dissolved organic carbon fractions in soil and stream water during variable hydrological conditions at Birkenes, southernmost Norway. Water Resour Res 28: 1585–1596

    Article  CAS  Google Scholar 

  • Ebeling G (1928) Über die Giftigkeit einiger Schwermetallsalze an Hand eines Falles aus der Praxis. Z Fischerei 26: 49–61

    CAS  Google Scholar 

  • Ellis MM (1937) Detection and measurement of stream pollution. Bull 22, US Bureau of Fisheries. Bull Bur Fish Bull 48: 365–437

    Google Scholar 

  • Ephraim JH, Reddy MM, Marinsky JA (1991) Ion binding by humic substances: considerations based on the solution chemistry and heterogenety of humic substances. In: Allard B, Borèn H, Grimvall A (eds) Humic substances in the aquatic and terrestrial environment. Lecture notes in earth science, vol 33, Springer, Berlin Heidelberg New York, pp 263–276

    Google Scholar 

  • Erichsen Jones JR (1939) The relation between the electrolytic solution pressures of the metals and their toxicity to the stickleback (Gasterosteus aculeatus L.). J Exp Biol 16: 425–437

    CAS  Google Scholar 

  • Felbeck GT Jr (1971) Structural hypotheses of soil humic acids. Soil Sci 111: 42–48

    Article  CAS  Google Scholar 

  • Fivelstad S, Leivestad H (1984) Aluminium toxicity to Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.): mortality and physiological response. Inst Freshwater Res, Drottningholm, vol 61: 69–77

    Google Scholar 

  • Fjeld E, Hessen DO, Roos N, Taugbol T (1988) Changes in gill ultrastructure and haemolymph chloride concentrations in the crayfish, Astacus astacus, exposed to de-acidified aluminium-rich water. Aquaculture 72: 139–150

    Google Scholar 

  • Fletcher TC, Jones R, Reid L (1976) Identification of glycoproteins in the goblet cells of epidermis and gill of plaice (Pleuronectes platessa L.) flounder (Platichtys flesus (L.)) and rainbow trout ( Salmo gairdneri Richardson ). Histochem J 8: 597–608

    Google Scholar 

  • Folsom BR, Popescu NA, Wood JM. (1986) Comparative study of aluminium and copper transport and toxicity in an acid-tolerant freshwater green alga. Environ Sci Technol 20: 616–620

    Article  PubMed  CAS  Google Scholar 

  • Freda J, McDonald DG. (1990) Effects of aluminium on the leopard frog, Rana pipiens: life stage comparisons and aluminium uptake. Can J Fish Aquat Sci 47: 210–216

    Article  CAS  Google Scholar 

  • Freda J, Cavdek V, McDonald DG (1990) Role of organic complexation in the toxicity of aluminium to Rana pipiens embryos and Bufo americanus tadpoles. Can J Fish Aquat Sci 47: 217–224

    Article  CAS  Google Scholar 

  • Fuller RD, Simone DM, Driscoll CT (1988) Forest clearcutting effects on trace metal concentrations: spatial patterns in soil solutions and streams. Water Air Soil Pollut 40: 185–195

    CAS  Google Scholar 

  • Galloway JN, Norton SA, Church MR (1983) Fresh water acidification from atmospheric deposition of sulphuric acid: a conceptual model. Environ Sci Technol 17: 541–545

    Google Scholar 

  • Gensemer RW (1991) The effects of pH and aluminium on the growth of the acidophilic diatom Asterionella ralfsii var. americana. Limnol Oceanogr 36: 123–131

    Article  CAS  Google Scholar 

  • Gjessing ET (1976) Origin, formation and distribution of humus. In: Gjessing ET (ed) Physical and chemical characteristics of aquatic humus, Ann Arbor Sci, Michigan, pp 3–10

    Google Scholar 

  • Goodrich, MS Dulak LH, Friedman MA, Lech JJ (1991). Acute and long-term toxicity of water soluble cationic polymers to rainbow trout ( Oncorhynchus mykiss) and the modification of toxicity by humic acid. Environ Toxicol Chem 10: 509–515

    Google Scholar 

  • Gran G (1952) determination of the equivalence point in potentiometric titrations II. Analyst 77:661–671

    Google Scholar 

  • Hardy F (1926) The role of aluminium in soil infertility and toxicity. J Agric Sci 16:616–631 Hartwell BL, Pember FR (1918) The presence of aluminium as a reason for the difference in the effect of so-called acid soil on barley and rye. Soil Sci 6: 259–279

    Google Scholar 

  • Harvey HH, Whelpdale DM (1986) On the prediction of acid precipitation events and their effects on fishes. Water Air Soil Pollut 30: 579–586

    Article  CAS  Google Scholar 

  • Hayes MHB (1991) Influence of the acid/base status on the formation and interactions of acids and bases in soils. In: Ulrich B, Sumner ME (eds) Soil acidity. Springer, Berlin Heidelberg New York, pp 80–96

    Chapter  Google Scholar 

  • Hayes MHB, Swift RS (1978) The chemistry of soil organic colloid. In: Greenland DJ, Hayes MHB (eds) The chemistry of soil constituents. Wiley, Chichester, pp 179–320

    Google Scholar 

  • Hedin LO, Likens GE, Kimberley MP, Driscoll CT (1990) A field experiment to test whether organic acids buffer acid deposition. Nature 345: 798–800

    Article  CAS  Google Scholar 

  • Helliwell S, Batley GE, Florence TM, Lumsden BG (1983) Speciation and toxicity of aluminium in a model fresh water. Environ Technol Lett 4: 141–144

    Article  CAS  Google Scholar 

  • Henriksen A, Seip HM (1980) Strong and weak acids in surface waters of southern Norway and southwestern Scotland. Water Res 14: 809–813

    Article  CAS  Google Scholar 

  • Henriksen A, Skjelkvaale BL, Lien L, Traaen TS, Mannio J, Forsius M, Kämäri J, Mäkinen I, Berntell A, Wiederholm T, Wilander A, Moiseenko T, Lozovik P, Filatov N, Niinioja R, Harriman R, Jensen JP (1996) Regional lake surveys in Finland, Norway, Sweden, Northern Kola, Russian Karelia, Scotland, Wales 1995. Coordination and design. Report 40/1996, Serial No 3420–1996. Norwegian Institute for Water Research, Oslo.

    Google Scholar 

  • Hindar A, Henriksen A, Toerseth K, Semb A (1994) Acid water and fish death. Nature 372: 327–328

    Article  CAS  Google Scholar 

  • Hope D, Kratz TK, Riera JL (1996) Relationship between PCO2 and dissolved organic carbon in northern Wisconsin lakes. J Environ Qual 25: 1442–1445

    Article  CAS  Google Scholar 

  • Johansson A (1970) Automatic titration by stepwise addition of equal volumes of titrant. Analyst 95: 535–540

    Article  CAS  Google Scholar 

  • Jones JRE (1964) Fish and river pollution. Butterworth, Washington, DC

    Google Scholar 

  • Karlsson-Norrgren L Björklund I Ljungberg O Runn P (1986) Acid water and aluminium expo- sure: experimentally induced gill lesions in brown trout, Salmo trutta L. J Fish Dis 9: 11–25

    Article  Google Scholar 

  • Kahl JS, Anderson JL, Norton SA (1985) Water resource baseline data and assessment of impacts from acidic precipitation. Acadia National Park, Maine. Technical Report 16. National Park Service, North Atlantic Region, Boston

    Google Scholar 

  • Kononova MM (1975) Humus of virgin and cultivated soils. In: Gieseking JE (ed) Soil components, vol 1. Springer, Berlin Heidelberg New York, pp 475–526

    Chapter  Google Scholar 

  • Kramer JR, Davies SS (1988) Estimation of non-carbonato protolytes for selected lakes in the eastern lakes survey. Environ Sci Technol 22: 182–185

    Article  PubMed  CAS  Google Scholar 

  • Krug EC (1991) Review of acid-deposition-catchment interaction and comments on future research needs. J Hydrol 128: 1–27

    Article  CAS  Google Scholar 

  • Krug EC, Frink CF (1983) Acid rain on acid soil: a new perspective. Science 221: 520–525

    Article  PubMed  CAS  Google Scholar 

  • Krug EC, Isaacson PJ (1984) Comparison of water and dilute acid treatment on organic and inorganic chemistry of leachate from organic rich horizons of an acid forest soil. Soil Sci 137: 370–378

    Article  CAS  Google Scholar 

  • Krug EC, Isaacson PJ, Frink CR (1985) Appraisal of some current hypotheses describing acidification of watersheds. J Air Pollut Control Assoc 35: 109–114

    Article  CAS  Google Scholar 

  • Lee YH, Brosset C (1978) The slope of Grans’s plot: a useful function in the examination of precipitation, the water-soluble part of airborne particles, and lake water. Water Air Soil Pollut 10: 457–469

    Article  CAS  Google Scholar 

  • Leenheer JA, Huffman EWD (1979) Analytical method for dissolved organic carbon fraction. US Geol Sury Water Resour Invest, Report 79–4

    Google Scholar 

  • Leenheer JA, Wershaw RL, Reddy MM (1995) Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. I. Minor structures. Environ Sci Technol 29:393–398 Leuenberger B, Schindler PW (1986) Application of integral pK spectrometry to the titration curve of fulvic acids. Anal Chem 58: 1471–1474

    Google Scholar 

  • Leuven RSEW, Den Hartog C, Christiaans MMC, Heijligers WHC (1986) Effects of water acidification on the distribution pattern and the reproductive success of amphibians. Experientia 42: 495–503

    Article  CAS  Google Scholar 

  • Logen RM, Derby JC, Duncan LC (1982) Acid precipitation and lake susceptibility in the central Washington cascades. Envrion Sci Technol 16: 771–775

    Article  Google Scholar 

  • Lumsden JS, Ferguson HW (1994) Isolation and partial characterisation of rainbow trout ( Oncorhynchus mykiss) gill mucin. Fish Phys Biochem 12: 387–398

    Google Scholar 

  • Lydersen E (1991) Aluminium in dilute acidic freshwaters. Chemical, analytical and biological relevance. PhD thesis, University of Oslo

    Google Scholar 

  • Lydersen E, Henriksen A (1995) Seasalt effects on the acid neutralising capacity of streamwaters in southern Norway. Nord Hydrol 26: 369–388

    CAS  Google Scholar 

  • Lydersen E, Polèo ABS, Muniz IP, Salbu B, Bjoernstad HE (1990) The effects of naturally occurring high and low molecular weight inorganic and organic species on the yolk-sack larvae of Atlantic salmon ( Salmo salar L.) exposed to acidic aluminiumrich lake water. Aquat Toxicol 18: 219–230

    Google Scholar 

  • Lydersen E, Kroglund F, Nandrup Pettersen M, Polèo ABS, Rosseland BO, Riise G, Salbu B (1994) The importance of “in situ” measurements to relate toxicity and chemistry in dynamic aluminium freshwater systems. J Ecol Chem 3: 357–265

    Google Scholar 

  • Lydersen E, Fjeld E, Gjessing ET (1996) The humic lake acidification experiment (HUMEX): main physico-chemical results after five years of artificial acidification. Environ Int 22: 591–604

    Article  CAS  Google Scholar 

  • Magistad OC (1925) The aluminium content of the soil solution and its relation to soil reaction and plant growth. Soil Sci 20: 181–225

    Article  Google Scholar 

  • Malley DF, Chang PSS (1985) Effects of aluminium and acid on calcium uptake by the crayfish, Orconectes virilis. Arch Environ Contam Toxicol 14: 739–747

    Google Scholar 

  • McCahon CP, Brown AF, Poulton MJ, Pascoe D. (1989) Effects of acid, aluminium and lime additions on fish and invertebrates in a chronically acidic Welsh stream. Water Air Soil Pollut 45: 345–359

    Article  CAS  Google Scholar 

  • McColl JG, Pohlman AA (1986) Soluble organic acids and their chelating influence on Al and other metal dissolution from forest soils. Water Air Soil Pollut 31: 917–927

    Article  CAS  Google Scholar 

  • Mulder J, Christophersen N, Haus M, Vogt RD, Andersen S, Andersen DO (1990) Water flow paths and hydrochemical controls in the Birkenes catchment as inferred from a rainstorm high in seasalts. Water Resour Res 26: 611–622

    CAS  Google Scholar 

  • Muniz IP, Leivestad H (1980) Acidification -effects on freshwater fish. In: Drabloes D, Tollan A (eds) Ecological impacts of acid precipitation, SNSF-project. Proc Int Conf Sandefjord, Norway. Grefslie Ltd, Mysen, pp 84–92

    Google Scholar 

  • Munson RK, Gherini SA (1993) Influence of organic acids on the pH and acid-neutralising capacity of Adirondack lakes. Water Resour Res 29: 891–899

    Article  CAS  Google Scholar 

  • Murdock HR (1953) Some data on toxicity of metals in wastes to fish life are presented. Ind Eng Chem 45: 99A - 102A

    Article  Google Scholar 

  • Norton SA, Henriksen A (1983) The importance of CO2 in evaluation of effects of acidic deposition. Vatten 39: 346–354

    CAS  Google Scholar 

  • Oliver BG, Thurman EM, Malcolm RL (1983) The contribution of humic substances to the acidity of coloured natural waters. Geochim Cosmochim Acta 47: 2031–2035

    Article  CAS  Google Scholar 

  • Oshima S (1931) On the toxic action of dissolved salts and their electrolytes upon young eels (Anguilla japonica). J Imp Fish Exp Sta 2: 191–193

    Google Scholar 

  • Oughton DH, Salbu B, Bjoernstad HE (1992). Use of aluminium-26 tracer to study the deposition of aluminium species on fish gills following mixing of limed and acidic waters. Analyst 117: 619–621

    Article  PubMed  CAS  Google Scholar 

  • Pagenkopf GK (1983) Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH and water hardness. Environ Sci Technol 17: 342–346

    Article  CAS  Google Scholar 

  • Penny C, Adams C (1863) Report of experiments made upon fish, and of observations in connection with alleged pollution of the river Leven by discharges from the dyeworks at Leven-bank, Levenfield, Dillichip, and Dalmonock. River Pollution Commission: Evidence. Correspondence and Reports, vol 2, part 4, Scotland, pp 377–391.

    Google Scholar 

  • Perdue EM, Lytle CR (1984) Distribution model for binding of protons and metal ions by humic substances. Environ Sci Technol 17: 654–660

    Article  Google Scholar 

  • Perdue EM, Reuter JH, Parrish RS (1984) A statistical model of proton binding by humus. Geochim Cosmochim Acta 48: 1257–1263

    Article  CAS  Google Scholar 

  • Polèo ABS, Lydersen E, Rosseland BO, Kroglund F, Salbu B, Vogt RD, Kvellestad A (1994) Increased mortality of fish due to changing Al-chemistry of mixing zones between limed streams and acidic tributaries. Water Air Soil Pollut 75: 339–351

    Article  Google Scholar 

  • Pulley TE (1950) The effect of aluminium chloride in small concentration on various marine organisms. Texas J Sci 3: 405–411

    Google Scholar 

  • Reuss JO, Johnson DW (1985) Effect of soil processes on the acidification of water by acid deposition. J Environ Qual 14: 26–31

    Article  CAS  Google Scholar 

  • Reuss JO, Johnson DW (1986) Acid deposition and the acidification of soils and waters. Ecological studies, vol 59, Springer, New York Berlin Heidelberg Tokyo

    Book  Google Scholar 

  • Ritchie GSP, Posner AM (1982) The effect of pH and metal binding on the transport properties of humic acids. J Soil Sci 33: 233–247

    Article  CAS  Google Scholar 

  • Rosenqvist IT (1978) Alternative sources for acidification of river water in Norway. Sci Tot Environ 10: 39–49

    Article  CAS  Google Scholar 

  • Rosseland BO, Blakar IA, Bulger A, Kroglund F, Kvellestad A, Lydersen E, Oughton DH, Salbu B, Staurnes M, Vogt RD (1992) The mixing zone between limed and acidic river waters: complex aluminium chemistry and extreme toxicity for salmonids. Environ Pollut 78: 3–8

    Article  PubMed  CAS  Google Scholar 

  • Sanborn NH (1945) The lethal effect of certain chemicals on fresh water fish. Canning Trade 67 (49): 10–12

    CAS  Google Scholar 

  • Schecher WD, Driscoll CT (1987) An evaluation of uncertainty associated with aluminium equilibrium calculations. Water Resour Res 23: 525–534

    Article  CAS  Google Scholar 

  • Schecher WD, Driscoll CT (1988) An evaluation of the equilibrium calculations within acidification models: the effects of uncertainty in measured chemical compounds. Water Resour Res 24: 533–540

    Article  CAS  Google Scholar 

  • Schindler DW, Turner MA (1982) Biological, chemical and physical responses of lakes to experimental acidification. Water Air Soil Pollut 18: 259–271

    Article  CAS  Google Scholar 

  • Schnitzer M, Khan SU (1972) Humic substances in the environment. Dekker, New York

    Google Scholar 

  • Schofield CL (1977) Acid snow-melt effects on water quality and fish survival in the Adirondack Mountains of New York State, US Research Technical Completion Report A-072-NY. Office of Water Research and Technology, Dept of the Interior, Washington, DC

    Google Scholar 

  • Scott Hall, W Mirenda RJ (1991). Acute toxicity of wastewater treatment polymers to Daphnia pulex and the fathead minnow ( Pimephales promelas) and the effects of humic acid on polymer toxicity. J Water Pollut Contam Fed 63: 895–899

    Google Scholar 

  • Seip HM (1980) Acidification of freshwater -sources and mechanisms. In: Drabloes D, Tollan A (eds) Ecological impacts of acid precipitation, SNSF-project. Proc Int Conf Sandefjord, Norway. Grefslie Ltd, Mysen, pp 358–366

    Google Scholar 

  • Seip HM, Andersen DO, Christophersen N, Sullivan TJ, Vogt RD. (1989) Variations in concentrations of aqueous aluminium and other chemical species during hydrological episodes at Birkenes, southernmost Norway. J Hydrol 108: 387–405

    Article  CAS  Google Scholar 

  • Skartveit A (1980) Observed relationships between ionic composition of precipitation and runoff. In: Drabloes D, Tollan A (eds) Ecological impacts of acid precipitation, SNSF-project. Proc Int Conf Sandefjord, Norway. Grefslie Ltd, Mysen, pp 242–243.

    Google Scholar 

  • Skjelkvaale BL (1996) Monitoring of long-range transported polluted air and precipitation (in Norwegian). Norwegian State Pollution Control Authority (SFT), Oslo, report 671 /96

    Google Scholar 

  • Skjelkvaale BL, Henriksen A, Faafeng B, Fjeld E, Traaen T, Lien L, Lydersen E, Buan AK (1997) Regional lake survey 1995. A water chemical survey of 1500 Norwegian lakes. (in Norwegian). Monitoring of long-range transported polluted air and precipitation. Norwegian State Pollution Control Authority (SFT), Oslo, report 677 /96

    Google Scholar 

  • Skogheim OK, Rosseland BO, Hoell E, Kroglund F (1986) Effects of humic acid on acute aluminium toxicity to smolts of Atlantic salmon (Salmo salar L.) in acidic soft water. In: Rosse-land BO, Skogheim OK (eds) Acidic soft water and neutralisation: effects on fish physiology, fish toxicology and fish populations. Directorate for Nature and Management, Fish Research Division, Trondheim

    Google Scholar 

  • Stevenson FJ (1982) Humus chemistry. Wiley-Interscience, New York

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry, Wiley, New York

    Google Scholar 

  • Sullivan TJ, Driscoll CT, Eilers JM, Landers DH. (1988) Evaluation of the role of sea salt inputs in the long-term acidification of coastal New England lakes. Environ Sci Technol 22: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Sullivan TJ, Driscoll CT, Gherini SA, Munson RK, Cook RB, Charles DF, Yatsko CP (1989). Influence of aqueous aluminium and organic acids on measurements of acid neutralising capacity of surface waters. Nature 338: 408–410

    Article  CAS  Google Scholar 

  • Thomas A (1915) Effects of certain metallic salts upon fishes. Amer Fish Soc Trans 44: 120–124

    Article  Google Scholar 

  • Törnqvist L (1989) Studies of aluminium toxicity to the green algae Monoraphidium dybowskii and Stichococcus sp. with emphasis on phosphate metabolism. Acta Univ Ups Abstr, Uppsala Diss Sci 193

    Google Scholar 

  • Van de Winkel JG, Van Kuppevelt THMSM, Janssen HMJ, Lock RAC (1986) Glycosaminoglycans in the skin mucus of rainbow trout ( Salmo gairdneri ). Comp Biochem Physiol [B] 85: 473–475

    Google Scholar 

  • Visser SA (1982) Surface active phenomena by humic substances of aquatic origin. Rev Fr Sci Eau 1: 285–296

    CAS  Google Scholar 

  • Wallen IE, Greer WC, Lasater R (1957) Toxicity to Gambusia affinis of certain pure chemicals in turbid waters. Sewage Ind Wastes 29: 695–711

    CAS  Google Scholar 

  • Weatherley NS, Rutt GP, Thomas SP, Ormerod SJ (1991) Liming acid stream: aluminium toxicity to fish in mixing zones. Water Air Soil Pollut 55: 345–353

    Article  CAS  Google Scholar 

  • Weigelt C, Saare O, Schwab L (1885) Die Schädigung von Fischerei and Fischzucht durch Industrie-and Haus Abwässer. Arch Hyg 3: 39–117

    Google Scholar 

  • Wicklander L (1975) The role of neutral salts in the ion exchange between acid precipitation and soil. Geoderma 14: 93–105

    Article  Google Scholar 

  • Wilkinson KJ, Jones HG, Campbell PGC, Lachance M (1992) Estimating organic acid contributions to surface waters acidity in Quebec ( Canada ). Water Air Soil Pollut 61: 57–74

    Google Scholar 

  • Wilkinson KJ, Bertsch PM, Jagoe CH, Campbell PGC (1993) Surface complexation of aluminium on isolated fish gills. Environ Sci Technol 27: 1132–1138

    Article  CAS  Google Scholar 

  • Witters HE, Van Puymbroeck S, Vangenechten JHD, Vanderborght OLJ (1990) The effect of humic substances on the toxicity of aluminium to adult rainbow trout, Oncorhynchus mykiss ( Walbaum ). J Fish Biol 37: 43–53

    Google Scholar 

  • Wold CM, Selset R (1977) Glycoproteins in the skin mucus of the char (Salmo alpinus L.) Comp Biochem Physiol [B] 56: 215–218

    CAS  Google Scholar 

  • Wright RF (1983) Predicting acidification of North American lakes. Acid Rain Research, report 4/1983. Norwegian Institute for Water Research, Oslo

    Google Scholar 

  • Wright RF (1989) Rain project: role of organic acids in moderating pH change following reduction in acid deposition. Water Air Soil Pollut 46: 251–259

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lydersen, E. (1998). Humus and Acidification. In: Hessen, D.O., Tranvik, L.J. (eds) Aquatic Humic Substances. Ecological Studies, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03736-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03736-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08362-4

  • Online ISBN: 978-3-662-03736-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics