Skip to main content

Sources and Age of Aquatic Humus

  • Chapter
Aquatic Humic Substances

Part of the book series: Ecological Studies ((ECOLSTUD,volume 133))

Abstract

As aquatic scientists have recognized the diversity of processes controlled by or dependent upon aquatic humus, it has become important to learn more about the genesis, chemical properties, and concentration of humic substances in aquatic ecosystems. There are three classes of aquatic humus (fulvic acids, humic acids, and humin), all of which share the characteristics of being heterogeneous biomolecules which are yellow to brown or black in color, high to moderate molecular weight, and biologically recalcitrant. Fulvic acids are organic acids which are soluble at any pH; humic acids are soluble above pH 2; and humin is insoluble under the full range of pH. Aquatic humus occurs in both dissolved and solid phases, with molecular weights ranging from about 500 D for dissolved fulvic acid to greater than 100,000 D for humic acids in sediments. Although the heterogeneity of these humic fractions makes rigorous chemical studies challenging, there are sufficient analytical methods at hand to make progress toward understanding the sources, formation pathways, and fate of aquatic humus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken GR (1985) Isolation and concentration techniques for aquatic humic substances. In: Aiken GR, McKnight DM, Wershaw RL and MacCarthy P (eds) Humic substances in soil, sediment and water: geochemistry, isolation, and characterization, Wiley, New York, pp 363–385

    Google Scholar 

  • Aiken GR and RL Malcolm (1987) Moleular weight of aquatic fulvic acids by vapor pressure osmometry. Geochim. Cosmochim. Acta 51: 2177

    Article  CAS  Google Scholar 

  • Aiken GR, McKnight DM, Thorn KA, Thurman EM (1992) Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Organic Geochem 18: 567–573

    Article  CAS  Google Scholar 

  • Aiken GR, McKnight DM, Wershaw RL, Miller L (1991) Evidence for the diffusion of aquatic fulvic acid from the sediments of Lake Fryxell, Antarctica. In: Baker R (ed) Organic substances and sediments, Lewis, Chelsea, Michigan, pp 75–88

    Google Scholar 

  • Aiken GR, McKnight DM, Harnish R, Wershaw RL (1996) Geochemistry of aquatic humic substances in the Lake Fryxell Basin, Antarctica. Biogeochem 34: 157–188

    Google Scholar 

  • Aschan 0 (1932) Water humus and its role in the formation of marine iron ore. Ark. Kemi Miner Geol 10A (15): 1–143

    Google Scholar 

  • Averett RC, Leenheer, JA, McKnight, DM, Thorn, KA (1989) eds. Humic substances in the Suwannee River, Georgia: interactions, properties, and proposed structures, US Geological Survey Open-File Rep 87–557, p 377

    Google Scholar 

  • Baron J, McKnight DM, Denning AS (1991) Sources of dissolved and particulate organic material in Loch Vale Watershed, Rocky Mountain National Park, Colorado, USA. Biogeochemistry 15: 89–110

    Google Scholar 

  • Baron JS, Ojima DS, Holland EA, Parton WJ (1994) Analysis of nitrogen saturation potential for Rocky Mountain tundra and forest: implications for aquatic systems. Biogeochemistry 27: 61–82

    Article  Google Scholar 

  • Boyer EW, Hornberger GM, Bencala KE, McKnight DM (1996) Response characteristics of DOC flushing in an alpine catchment. Hydrological Processes (in press)

    Google Scholar 

  • De Haan H, Halma G, De Boer T, Haverkamp J (1981) Seasonal variations in the compositions of fulvic acid in Tjeukemeer, The Netherlands. Arch. Hydrobiol. 92: 11–23

    Google Scholar 

  • Ertel JR, Hedges JI Perdue EM (1984) Lignin signature of aquatic humic substances. Science 223: 485–487

    Article  PubMed  CAS  Google Scholar 

  • Ertel JR, Hedges JI, Devol AH, Richey JE (1986) Dissolved humic substances of the Amazon River system. Limnol Oceanogr 31 (4): 739–754

    Article  CAS  Google Scholar 

  • Grieve IC (1994) Dissolved organic carbon dynamics in two streams draining forested catchments at Loch Ard, Scotland. Hydrol Processes 8: 457–464

    Article  Google Scholar 

  • Harvey GR, Boran DA (1985) Geochemistry of humic substances in seawater. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (Eds) Humic substances in soil, sediment and water: geochemistry, isolation, and characterization. Wiley, New York, pp 233–247

    Google Scholar 

  • Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eEds) (1989) Humic substances. I I. In search of structure. Wiley, New York

    Google Scholar 

  • Hedges JI, Cowie GL, Richey JE, Quay PD (1994) Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limnol Oceanogr 39 (4): 743–761

    Article  CAS  Google Scholar 

  • Hessen DO, Andersen T, Lyche A (1990) Carbon metabolism in a humic lake: pool sizes and cycling through zooplankton. Limnol Oceanogr 35: 84–99

    Article  CAS  Google Scholar 

  • Hornberger, GM, Bencala, KE, McKnight, DM (1994) Hydrological controls on the temporal variation of dissolved organic carbon in the Snake River near Montezuma, Colorado. Biogeochemistry 25: 147–165

    Google Scholar 

  • Huffman EWD Jr., Stuber HA (1985) Analytical methodology for elemental analysis of humic substances. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water: geochemistry, isolation, and characterization. Wiley, New York, pp 433–456

    Google Scholar 

  • Ishiwtari R (1985) Geochemistry of humic substances in lake sediments. In: Aiken GR, McKnight DM, Wershaw RI, MacCarthy P (eds) Humic substances in soil, sediment and water: geochemistry, isolation, and characterization. Wiley, New York, pp 147–180

    Google Scholar 

  • Kirk TK (1984) Degradation of lignin. In: Gibson DT (ed) Microbial degradation of organic compounds. Microbiology series, vol 13. Marcel Dekker, New York, pp 399–437

    Google Scholar 

  • Leenheer JA, McKnight DM, Thurman EM, MacCarthy P (1989) Structural components and proposed structural models of fulvic acid from the Suwannee River. In: Humic substances in the Suwannee River, Georgia: interactions, properties, and proposed structures, US Geological Survey Open-File Rep 87–557, pp 335–359

    Google Scholar 

  • MacCarthy P, Rice JA (1991) An ecological rationale for the heterogeneity of humic substances: a holistic perspective on humus. In: Schneider SH, Boston PJ (eds) Scientists on Gaia (p 339345 ). MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Malcolm RI (1990) The uniqueness of humic substances in each of soil, stream and marine environments. Anal Chim Acta 232: 19–30

    Article  CAS  Google Scholar 

  • McKnight DM (1991) Feedback mechanisms involving humic substances in aquatic ecosystems.. In: Schneider SH, Boston PJ (eds) Scientists on Gaia (p 330–338 ). MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • McKnight DM, Aiken GS, Andrews ED, Bowles EC, Harnish RA (1993a) Dissolved organic material in Dry Valley lakes: a comparison of Lake Fryxell, Lake Hoare, and Lake Vanda. In: Green WJ, Friedmann EI (eds) Physical and biogeochemical pocesses in Antarctic Ikes, Antarctic research series, vol 59. pp 119–133

    Google Scholar 

  • McKnight DM, Smith RL, Harnish RA, Miller CL, Bencala KE (1993b) Seasonal relationships between planktonic microorganisms and dissolved organic material in an alpine stream. Biogeochemistry 21: 39–59

    Article  CAS  Google Scholar 

  • McKnight DM, Andrews ED, Spaulding SA, Aiken GR (1994) Aquatic fulvic acids in algal-rich Antarctic ponds. Limnol Oceanogra 39 (8): 1972–1979

    Article  Google Scholar 

  • McKnight DM, Harnish R, Wershaw RI, Baron JS, Schiff S (1997) Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park. Biogeochemistry 36: 99–124

    Google Scholar 

  • Mobed JJ, Hemmingsen SL, Autry JL, McGowan LB (1996) Fluorescence characterization of IHSS humic substances: total luminescence spectra with absorbance correction. Environ Sci Technol 30: 3061–3065

    Google Scholar 

  • Moran MA, Hodson RE (1990) Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol Oceanogr 35 (8): 1744–1756

    Article  CAS  Google Scholar 

  • Ranville JF, Harnish RA, McKnight DM (1991) Particulate and colloidal organic material in Pueblo Reservoir, Colorado: influence of autochthonous source on chemical composition. In: Baker RA (ed) Organic substances and sediment in water, vol 1. Lewis, Chelsea, Michigan, pp 47–73

    Google Scholar 

  • Schiff SL, Aravena R, Trumbore SE, Dillon PJ (1990) Dissolved organic carbon cycling in forested watersheds: a carbon isotope approach. Water Resour Res 26: 2949–2957

    Article  CAS  Google Scholar 

  • Scully NM, Lean DRS (1994) The attenuation of ultraviolet light in temperate lakes. Arch Hydrobiol 43: 135–144

    Google Scholar 

  • Serkiz SM, Perdue EM (1990) Isolation of dissolved organic matter from the Suwannee River using reverse osmosis. Water Res 24: 911–916

    Article  CAS  Google Scholar 

  • Spaulding SA, McKnight DM, Smith RL, Dufford R (1994) Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. J Plankton Res 16: (5): 527–541

    Article  Google Scholar 

  • Steinberg C, Meunster U (1985) Geochemistry and ecological role of humic substances in lake-water. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water: geochemistry, isolation, and characterization. Wiley, New York, pp 105–146

    Google Scholar 

  • Stevenson FJ (1985) Geochemistry of soil humic substances. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water: geochemistry, isolation, and characterization. Wiley, New York, pp 13–52

    Google Scholar 

  • Stewart WDP (ed) (1974) Algal physiology and biochemistry. University of California Press, Berkeley

    Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. Nijhoff/Junk Boston

    Google Scholar 

  • Thurman EM, Malcolm RI (1981) Preparative isolation of aquatic humic substances. Environ Sci Technol 15: 463–466

    Article  PubMed  CAS  Google Scholar 

  • Vandenbroucke R, Pelet R, Debyser Y (1985) Geochemistry of humic substances in marine sediments. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water: geochemistry, isolation, and characterization. Wiley, New York, pp 249–273

    Google Scholar 

  • Waksman SA (1936) Humus. Williams and Wilkins, Baltimore, Maryland

    Google Scholar 

  • Wershaw RL (1992) Membrane-micelle model for humus in soils and sediments and its relation to humification. US Geological Survey Open-File Rep 91–513

    Google Scholar 

  • Wetzel RG (1990) Land-water interfaces: metabolic and limnological regulators. Verh Int Ver Limnol 24: 6–24

    Google Scholar 

  • Wetzel RG, Hatcher PG, Bianchi TS (1995) Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Oceanogr 40 (8): 1369–1380

    Article  CAS  Google Scholar 

  • Williams MW, Baron JS, Caine N, Sommerfeld R, Sanford R Jr. (1996) Nitrogen saturation in the Rocky Mountains. Environ Sci Technol 30: 640–646

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McKnight, D.M., Aiken, G.R. (1998). Sources and Age of Aquatic Humus. In: Hessen, D.O., Tranvik, L.J. (eds) Aquatic Humic Substances. Ecological Studies, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03736-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03736-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08362-4

  • Online ISBN: 978-3-662-03736-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics