Skip to main content

The Role of Microbial Extracellular Enzymes in the Transformation of Dissolved Organic Matter in Humic Waters

  • Chapter
Aquatic Humic Substances

Part of the book series: Ecological Studies ((ECOLSTUD,volume 133))

Abstract

Non-living natural organic matter (NOM) comprises in most aquatic environments the largest organic matter (OM) fraction, and it harbours also the largest organic carbon pool (Allen 1976; Wetzel 1983; Steinberg and Münster 1985; Thurman 1985; Hedges 1992; Münster 1993). Furthermore, NOM has been recognized as the most important carbon and energy resource in the detritus food chain processes (Williams 1981; Hobbie 1992; Wetzel 1992). Non-predatory processing and transfer of organic carbon in parallel with the classical grazing food chain are significant fractions of NOM passing and channelled through the aquatic food chain (Azam and Cho 1987; Cho and Azam 1988; Williams 1990; Ducklow 1991). The NOM pools can be subdivided into dissolved (DOM) and particulate organic matter (POM). Both of these summarize the major part of the organic detritus pools (Wetzel 1983; Thurman 1985). Besides NOM utilization by phagotrophic microbes such as flagellates (Sherr 1988; Sanders 1991; Tranvik et al. 1993), osmotrophic microorganisms such as bacteria and fungi are the major sinks for NOM, and by utilizing primarily DOM resources (Benner et al. 1986, 1989; Azam and Cho 1987; Cho and Azam 1988) they are closing the link between the classical grazing food chain and the microbial loop (Pomeroy 1974; Sorokin 1977; Williams 1981; Azam et al. 1983; Wetzel 1992). The ratio of living to nonliving OM in many aquatic environments has been estimated in the range of 100 to 10:1 and it empasizes the importance of NOM sources in aquatic ecosystem processes (Allen 1976; Wetzel 1984, 1990; Farrington 1992; Hobbie 1992; Münster and Albrecht 1994). The flow of OM through the aquatic food chain is mostly dominated at first by the photosynthetic production of OM, the utilization and transformation of NOM by microheterotrophs via the microbial food web, and finally its transference into the higher food chain, partially respired and/or its sedimentation to the bottom (Fig. 9.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson S (ed) (1981) Chemical communication at the microbial level vol 1 CRC Press, Boca Raton

    Google Scholar 

  • Aiken GR, McKnight DM, Wershaw RL, MacCarthy R (1985) Humic substances in soil, sediment and water. Geochemistry, isolation, and characterization. J. Wiley and Sons, New York Alexander M (1975) Environmental and microbiological problems arising from recalcitrant molecules. Microb Ecol 2: 17–27

    Google Scholar 

  • Allen HL (1976) Dissolved organic matter in lakewater: characteristics of molecular weight size-fractions and ecological implications. Oikos 27: 64–70

    Article  CAS  Google Scholar 

  • Ammerman JW (1991) Role of ecto-phosphohydrolases in phosphorus regeneration in estuarine and coastal ecosystems. In: Chróst RJ (ed) Microbial enzymes in aquatic environments. Brock/Springer Series in contemporary bioscience. Springer Berlin Heidelberg New York, pp 165–186

    Chapter  Google Scholar 

  • Ammerman JW, Azam F (1985) Bacterial 5’-nucleotidase in aquatic ecosystems• a novel mechanism of phosphorus regeneration. Science 227: 1338–1340

    Article  PubMed  CAS  Google Scholar 

  • Amon RMW, Benner R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41: 41–51

    Article  CAS  Google Scholar 

  • Andersen RA, Sowers JA (1968) Optimum conditions for bonding of plant phenols to insoluble polyvinylpyrrolidone. Phytochemistry 7: 293–301

    Article  CAS  Google Scholar 

  • Azam F, Cho BC (1987) Bacterial utilization of organic matter in the sea. In: Fletcher M, Gray TRG, Jones JG (eds) Ecology of microbial communities, Cambridge University Press, Cambridge, pp 261–281

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water column microbes in the sea. Mar Ecol Prog Ser 10: 257–263

    Article  Google Scholar 

  • Azam F,Smith DC, Steward GF, Hagström A (1994) Bacteria-organiv matter coupling and its significance for oceanic carbon cycling. Microb Ecol 28: 167–179

    Article  Google Scholar 

  • Bärlocher, F (ed) (1981) The ecology of aquatic hyphomycetes. Ecological studies vol. 94. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bauer JE, Williams PM, Druffel ERM (1992) 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature 357: 667–670

    Google Scholar 

  • Benner R, Moran MA, Hodson RE (1986) Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes. Limnol Oceanogr 31: 89–100

    Article  Google Scholar 

  • Benner R, Lewis DL Hodson RE (1989) Biogeochemical cycling of organic matter in acid environments: are microbial degradative processes adapted to low pH? In: Rao SS (ed) Acid stress and aquatic microbial interactions, CRC Press, Boca Raton, pp 33–44

    Google Scholar 

  • Benner R, Opsahl S, Chin-Leo G, Richey JE, Forsberg BR (1996) Bacterial carbon metabolism in the Amazon river system. Limnol Oceanogr 40: 1262–1270

    Article  Google Scholar 

  • Bergemeyer HU (ed) (1990) Methoden der enzymatischen analyse, vols 1,2. Verlag Chemie, Weinheim

    Google Scholar 

  • Billén G (1984) Heterotrophic utilization and regeneration of nitrogen. In: Hobbie JE, Williams PJ leB (eds) Hetrotrophic activity in the sea. NATO SAD. Plenum Press, New York, pp 313–355

    Google Scholar 

  • Billén G (1991) Protein degradation in aquatic environments. In: Chróst RJ (ed) Microbial enzymes in aquatic environments, Brock/Springer Series in contemporary bioscience. Springer, Berlin Heidelberg New York, pp 123–143

    Google Scholar 

  • Billén G, Servais P (1989) Modelisation des proces de degradation bactérienne de la matiére organique en milieu aquatique. In: Bianchi MC (ed) Micro-organismes dans les ecosystemes oceaniques. Masson, Paris, pp 219–245

    Google Scholar 

  • Bittl T, Babenzien HD (1996) Microbial activity in an artificial divided acidic lake. Arch Hydrobiol Adv Limnol 48: 113–121

    CAS  Google Scholar 

  • Bochdansky AB, Puskaric S, Herndl GJ (1995) Influence of zooplankton grazing on free dissolved enzymes in the sea. Mar Ecol Progr Ser 121: 53–63

    Article  CAS  Google Scholar 

  • Boon P (1989) Organic matter breakdown and nutrient regeneration in Australian freshwaters. I. Methods for exoenzyme assays in turbid aquatic environments. Arch Hydrobiol 115: 339–359

    CAS  Google Scholar 

  • Boon P (1990) Organic matter breakdown and nutrient regeneration in Australian freshwaters. II: Spatial and temporal variation, and relation with environmental conditions. Arch Hydrobiol 117: 405–436

    CAS  Google Scholar 

  • Boyer PD, Lardy H, Mayrbäck K (eds) (1959–1983) The enzymes, vols. 1–16. Academic Press, New York San Francisco London

    Google Scholar 

  • Burdige DJ (1991) The kinetics of organic matter mineralization in anoxic marine sediments. J Mar Res 49: 727–761

    Article  CAS  Google Scholar 

  • Burns RG (ed) (1978) Soil enzymes. Academic Press, New York

    Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and possible role in microbial ecology. Soil Biol Biochem 14: 423–427

    Article  CAS  Google Scholar 

  • Burns RG (1983) Extracellular enzyme-substrate interactions in soil. In: Slater JH, Whittenbury R, Wimpenny JWT (eds) Microbes in their natural environment. Cambridge University Press, Crambridge, pp 249–298

    Google Scholar 

  • Button DK (1985) Kinetics of nutrient-limetid transport and microbial grpwth. Microb Rev 49: 270–297

    CAS  Google Scholar 

  • Button DK (1986) Affinity of organisms for substrate. Limnol Oceanogr 31: 453–456

    Article  Google Scholar 

  • Chaudhry GR (ed) (1994) Biological degradation and bioremediation of toxic chemicals. Chapman and Hall, London

    Google Scholar 

  • Cho BC, Azam F (1988) Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332: 441–443

    Article  CAS  Google Scholar 

  • Christman RF, Gjessing ET (eds) (1983) Aquatic and terrestrial humic materials. Ann Arbor Science, Ann Arbor

    Google Scholar 

  • Chróst RJ (1989) Characterization and significance of 13-glucosidase activity in lake water. Limnol Oceanogr 34: 660–672

    Article  Google Scholar 

  • Chróst RJ (1990) Ectoenzymes in aquatic environments: origin, activity and ecological significance. In: Overbeck J, Chróst RJ (eds) Advanced biochemical and molecular approaches to Aquatic microbial ecology. Brock/ Springer series in contemporary bioscience. Springer, Berlin Heidelberg New York pp 47–78

    Google Scholar 

  • Chróst RJ (1991) Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst RJ (ed.) Microbial enzymes in aquatic environments. Brock/Springer se-

    Google Scholar 

  • ries in contemporary bioscience. Springer, Berlin Heidelberg New York, pp 29–59

    Google Scholar 

  • Chróst RJ (1994) Microbial enzymatic degradation and utilization of organic matter. In: Overbeck J, Chróst RJ (eds) Chróst RJ. 105. Springer

    Google Scholar 

  • Berlin Heidelberg New York, pp 118–174

    Google Scholar 

  • Chróst RJ, Krambeck HJ (1986) Fluorescence correction for measurements of enzyme activity in

    Google Scholar 

  • natural waters using methylumbelliferyl-substrates. Arch Hydrobiol 106:79–90

    Google Scholar 

  • Chróst RJ, Overbeck J (1987) Kinetics of alkaline phosphatase activity and phosphorus avail-

    Google Scholar 

  • ability for phytoplankton and bacterioplankton in lake Plußsee (a north German eutrophic lake). Microb Ecol 13:229–248

    Google Scholar 

  • Chróst RJ, Velimirov B (1991) Measurement of enzyme kinetics in water samples: effect of freezing and soluble stabilizer. Mar Ecol Progr Ser 70: 93–100

    Article  Google Scholar 

  • Chróst RJ, Münster U, Rai H, Albrecht D, Witzel KP, Overbeck J (1989) Photosynthetic production and exoenzymatic degradation of organic matter in euphotic zone of an eutrophic lake. J Plankton Res 11: 223–242

    Article  Google Scholar 

  • Colowick SP, Kaplan NO (founding eds, and serial eds) (1955–1996) Methods in Enzymology Vols.l-286. Academic Press, New York

    Google Scholar 

  • De Haan H (1974) Effect of a fulvic acid fraction on the growth of a Pseudomonas sp. from Tjeukemeer (the Netherlands). Freshw Biol 4: 301–310

    Article  Google Scholar 

  • De Haan H (1976) Evidence for the induction of catechol-1,2-oxygenase by fulvic acid. Plant Soil 45: 129–136

    Article  Google Scholar 

  • De Haan H (1983) Use of ultraviolet spectroscopy, gel filtration, pyrolysis/mass spectrometry and numbers of benzoate-metabolizing bacteria in the study of humification and degradation of aquatic organic matter. In: Christman RF, Gjessing ET (eds) Aquatic and terrestrial humic material. Ann Arbor Sci. Ann Arbor, pp 165–182

    Google Scholar 

  • De Haan H (1993) Solar UV-light penetration and photodegredation of humic substances in peaty lake water. Limnol Oceanogr 38: 1072–1076

    Article  Google Scholar 

  • De Haan H, De Boer T (1979) Seasonal variations of fulvic acids, amino acids, and sugars in Tjeukemeer (the Netherlands). Freshw Biol 4: 301–310

    Article  Google Scholar 

  • Dixon M, Web EC (eds) (1979) Enzymes. Longman, London

    Google Scholar 

  • Dixon RK (1992) Global carbon cycle and climatic change. ACS Symp Ser 483: 375–378

    Google Scholar 

  • Ducklow HW (1991) The passage of carbon through microbial foodwebs: results from flow network models. Mar Microb Food Webs 5: 129–144

    Google Scholar 

  • Ducklow HW, Purdie DA, Williams PJ, leB, Davis JM (1986) Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 332: 865–867

    Google Scholar 

  • Druffel ERM, Williams PM (1990) Identification of a depp marine source of particulate organic carbon using bomb 14C. Nature 347: 172–174

    Article  CAS  Google Scholar 

  • Edling, H, Tranvik L (1996) Effects of pH on ß-glucosidase activity and availability of DOC to bacteria. Arch Hydrobiol Adv Limnol 48: 123–132

    CAS  Google Scholar 

  • Enzyme Nomenclature (1975) Recommendations (1972) of the International Union of Pure and Applied Chemistry and the International Union of Biochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Enzyme Nomenclature (1984) Recommendations of the Nomenclature Committee of the International Union of Biochemistry and the Nomenclature and Classification of Enzyme-Catalyzed Reactions. Academic Press, New York

    Google Scholar 

  • Enzyme Nomenclature Supplementation and Revisions (1986–1990). In: Eur J Biochem 157: 1–26 (1986); 179:489–533 (1989); 187:263–281 (1990)

    Google Scholar 

  • Farrington JW (1992) Marine organic geochemistry: review and challenges for the future. Mar Chem 39: 242 pp

    Article  Google Scholar 

  • Fermi C (1906) The presence of enzymes in soil, water and dust. Zentralbl Bakteriol Parasitenk 26: 330–334

    Google Scholar 

  • Fiechter A (1993) Function and synthesis of enzymes involved in lignin degradation. J Biotechnol 30: 49–55

    Article  CAS  Google Scholar 

  • Frimmel FH, Christman RF (eds) (1988) Humic substances and their role in the environment. Wiley, New York

    Google Scholar 

  • Gagosian RB, Lee C (1981) Processes controlling the distribution of biogenic organic compounds in seawater. In: Duursma EK, Dawson R (eds) Marine organic chemistry. Evolution, composition, interactions and chemistry of organic matter in seawater. Elsevier, Amsterdam, pp 91–123

    Google Scholar 

  • Geller A (1985a) Light-induced conversion of refractory, high molecular weight lake water constituents. Schweiz Z Hydrol 47: 21–26

    Article  CAS  Google Scholar 

  • Geller A (1985b) Degradation and formation of refractory DOM by bacteria during simultaneous growth on labile substrates and persistent lake water constituents. Schweiz Z Hydrol 47: 27–34

    Article  CAS  Google Scholar 

  • Geller A (1986) Comparsion of mechanisms enhencing biodegradability of refractory lake waters constituents. Limnol Oceanogr 31: 755–764

    Article  CAS  Google Scholar 

  • Gjessing ET (ed) (1976) Physical and chemical characteristics of aquatic humics. Ann Arbor Science, Ann Arbor

    Google Scholar 

  • Gjessing ET (1992) The HUMEX project: experimental acidification of a catchment and its humic lake. Environ Int 18: 535–543

    Article  CAS  Google Scholar 

  • Gjessing ET, Gjerdahl TG (1970) Influence of ultraviolet radiation on aquatic humus. Vatten 26: 144–145

    CAS  Google Scholar 

  • Glenn JK, Gold MH (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 45: 1741–1747

    PubMed  CAS  Google Scholar 

  • Gold MH, Glenn JK, Alic M (1988) Use of polymeric dyes in lignin biodegradation assays. Methods Enzymol 161: 74–78

    Article  CAS  Google Scholar 

  • Goulder R (1990) Extracellular enzyme activity associated with epiphytic microbiota on submerged stems of the red Phragmites australis. FEMS Microb Eco! 73: 323–331

    Article  CAS  Google Scholar 

  • Graneli W, Lindell MJ, Tranvik LJ (1996) Photooxidative CO2 production in lakes of different humic content. Limnol Oceanogr 41: 698–706

    Article  CAS  Google Scholar 

  • Harvey GR, Boran DA, Chosal LA, Tokar JM (1983) The structure of marine fulvic and humic acids. Mar Chem 12: 119–132

    Article  CAS  Google Scholar 

  • Harvey HW (1925) Oxidation in sea water. J Mar Biol Assoc UK 13: 953–969

    Article  CAS  Google Scholar 

  • Haslam E (1974) Polyphenol-protein interactions. Biochem J 139: 285–288

    PubMed  CAS  Google Scholar 

  • Haugland RP (ed) (1996). Molecular probes. Handbook of fluorescent probes and research chemicals. Molecular Probes, Eugene, 6th ed, 680 pp

    Google Scholar 

  • Hayaishi 0 (ed) (1962) Oxygenases. Academic Press, New York

    Google Scholar 

  • Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (1989) Humic substances I I: In search of structure. Wiley, Chichester

    Google Scholar 

  • Hedges JI (1992) Global biogeochemical cycles: progress and problems. Mar Chem 39. 67–93

    Article  CAS  Google Scholar 

  • Hernandez I, Hwang SJ, Heath RT (1996) Measurement of phosphomonoesterase activity with radiolabelled glucose-6-phosphate. Role in the phosphorus requirement of phytoplankton and bacterioplankton in a temperate mesotrophic lake. Arch Hydrobiol 137: 265–280

    Google Scholar 

  • Hessen DO (1985) The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microbial Ecol 31: 215–223

    Article  CAS  Google Scholar 

  • Hessen DO (1992) Dissolved organic carbon in a small humic lake: effects on bacterial production and respiration. Hydrobiologia 229: 115–123

    Article  CAS  Google Scholar 

  • Hobbie JE (1992) Microbial control of dissolved organic carbon in lakes: research for the future. Hydrobiologia. 229: 115–123

    Article  Google Scholar 

  • Hobbie JE (1993) A perspective on the ecology of aquatic microbes. In: Ford TE (ed.) Aquatic microbiology: an ecological approach. Blackwell, Oxford, pp 1–14

    Google Scholar 

  • Hobbie JE (1994). The state of the microbe: a summary of a symposium honoring Lawrence Pomeroy. Microb Eco! 28: 113–116

    Article  Google Scholar 

  • Hollibaugh JT, Azam F (1983) Microbial degradation of dissolved proteins in seawater. Limnol Oceanogr 28: 1104–1116

    Article  CAS  Google Scholar 

  • Hoppe HG (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11: 299–308

    Article  CAS  Google Scholar 

  • Hoppe HG (1991) Microbial extracellular enzyme activity: a new key parameter in aquatic ecology. In: Chróst RJ (ed) Microbial enzymes in aquatic environments, Brock/Springer series in contemporary bioscience. Springer Berlin Heidelber New York, pp 60–83

    Chapter  Google Scholar 

  • Hoppe HG (1993) Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurements of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis, London, pp 509–512

    Google Scholar 

  • Hoppe HG, Kim SJ, Gocke K (1988) Microbial decomposition in aquatic environments: combined processes of extracellular enzyme activity and substrate uptake. Appl Environ Microbio154: 784–790

    Google Scholar 

  • Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bact Rev 36: 146–155

    PubMed  CAS  Google Scholar 

  • Ilmavirta V (1988) Phytoflagellates and their ecology in Finnish brown-water lakes. Hydrobiologia 161: 255–270

    Article  CAS  Google Scholar 

  • Jackson CR, Foreman CM, Sinsabaugh RL (1995) Microbial enzyme activities as indicators of organic matter processing rates in a lake Erie coastal wetland. Freshw Biol 34: 329–342

    Article  CAS  Google Scholar 

  • Jones GJ, Palenik BP, Morel FMM (1987) Trace metal reduction by phytoplankton: the role of

    Google Scholar 

  • plasmalemma redox enzymes. J Phycol 23:237–244

    Google Scholar 

  • Jones SE, Lock MA (1989) Hydrolytic extracellular enzyme activity in heterotrophic biofilms from two contrasting streams. Freshw Biol 22: 289–296

    Article  CAS  Google Scholar 

  • Jürgens K, Güde H (1990) Incorporation and release of phosphorus by planktonic bacteria and phagotrophic flagellates. Mar Ecol Progr Ser 59: 271–284

    Article  Google Scholar 

  • Karner M, Herndl G (1992) Extracellular enzymatic activity and secondary production in free-living and marine snow associated bacteria. Mar Biol 113: 341–347

    CAS  Google Scholar 

  • Karnovsky ML (1986) Ectoenzymes: their modulation and similarity to certain enzymes of intracellular membranes. In: Karnovsky GW, Reddington M, Zimmermann H (eds) Cellular biology of ectoenzymes. Springer, Berlin Heidelberg New York, pp 3–13

    Chapter  Google Scholar 

  • Kemp PF (1994) A philosophy of methods development: the assimilation of new methods and information into aquatic microbial ecology. Microb Ecol 28: 159–162

    Article  Google Scholar 

  • Kirchman DL, Suzuki Y, Garsdide C, Ducklow HW (1991) High turnover rates of dissolved organic carbon during a spring phytoplankton bloom. Nature 352: 612–614

    Article  CAS  Google Scholar 

  • Kramer CJM (1979) Degradation by sunlight of dissolved fluorescing organic substances in the upper layers of the eastern Atlantic Ocean. Neth J Sea Res 13: 325–329

    Article  Google Scholar 

  • Kreps E (1934) Organic catalysts or enzymes in sea water. In: James Johnstone Memorial Volume, University of Liverpool Press, Liverpool, pp 193–202

    Google Scholar 

  • Kristoffersen K, Bernard C, Ekebom J (1996) A comparison of the ability of different heterotrophic nanoflagellates to incorporate dissolved macromolecules. Arch Hydrobiol Adv Limnol 48: 73–84

    Google Scholar 

  • Ladd JN, Butler JHA (1975) Humus-enzyme systems and synthetic, organic polymer-enzyme analogs. Soil Biochem 4: 143–194

    CAS  Google Scholar 

  • Lähdesmäki P, Piispanen R (1988) Degradation products and the hydrolytic enzyme activities in the soil humification process. Soil Biol Biochem 20: 287–292

    Article  Google Scholar 

  • Lähdesmäki P, Piispanen R (1992) Soil enzymology: role of protective colloid systems in the preservation of exoenzyme activities in soil. Soil Biol. Biochem. 24: 1173–1177

    Google Scholar 

  • Lee C, Wakeham SG (1992) Organic matter in the water column: future research challenges. Mar Chem 39: 95–118

    Article  CAS  Google Scholar 

  • Lindell MJ, Granéli W, Tranvik LJ (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40: 195–199

    Article  Google Scholar 

  • Ljungdahl LG (1989) Mechanisms of cellulose hydrolysis by enzymes from anaerobic and aerobic bacteria. In: Coughlan MP (ed) Enzyme systems for lignocellulose degradation. Elsevier, London, pp 5–16

    Google Scholar 

  • Loomis WD, Bataille J (1966) Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry 5: 423–438

    Article  CAS  Google Scholar 

  • Manafi M, Kneifel W, Bascomb S (1991) Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbial Rev 55: 335–348

    CAS  Google Scholar 

  • Martin JH, Fitzwater SE (1992) Dissolved organic carbon in the Atlantic, Southern and Pacific Oceans. Nature 356: 699–700

    Google Scholar 

  • Marxen J, Fiebig DM (1993) Use of perfused cores for evaluating extracellular enzyme activity in stream-bed sediments. FEMS Microbial Ecol 13: 1. 12

    Google Scholar 

  • Marxen J, Schmidt HH (1993) Extracellular phosphatase activity in sediments of the Breitenbach, a central european mountain stream. Hydrobiologia 253: 207–216

    Article  Google Scholar 

  • Marxen J, Witzel KP (1991) Significance of extracellular enzymes for organic matter degradation and nutrient regeneration in small streams. In: Chrost RJ (ed) Microbial enzymes in aquatic environments. Brock/Springer series in contemporary bioscience. Springer, Berlin, Heidelberg New York, pp 270–285

    Google Scholar 

  • McFeters GO, Yu FP, Pyle BH, Stewart PhS (1995) Physiological assessment of bacteria using fluorochromes. J Microbiol Methods 21: 1–13

    Article  PubMed  CAS  Google Scholar 

  • McKnight DM, Behmel P, Francko DA, Gjessing ET, Münster U, Petersen Jr RC, Skulberg OM

    Google Scholar 

  • Steinber CEW, Tipping E, Visser SA, Werner PW, Wetzel RG (1990) How do organic acids in-teract with solutes, surfaces, and organisms. In: Perdue EM, Gjessing ET (eds) Organic acids in aquatic ecosystems. Wiley, Chichester New York Brisbane Toronto Singapore, pp 223–243

    Google Scholar 

  • McKnight DM, Aiken GR, Smith RL (1991) Aquatic fulvic acids in microbially based ecosystem: results from two desert lakes in Antarctica. Limnol Oceanogr 36: 998–1006

    Article  CAS  Google Scholar 

  • McManus JP, Davis KG, Beart JE, Gaffey SH, Lilley TH, Haslam E (1985) Polyphenol interactions. Part 1. Introduction. Some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J Chem Perkin Trans 2: 1429–1438

    Google Scholar 

  • Meyer-Reil LA (1986) Measurements of hydrolytic activity and incorporation of dissolved or- ganic substrates by microorganisms in marine sediments. Mar Ecol Progr Ser 31: 143–149

    Article  CAS  Google Scholar 

  • Meyer-Reil LA (1991) Ecological aspects of enzymatic activity in marine sediments. In: Chróst RJ (ed) Microbial enzymes in aquatic environments, Brock/Springer series in contemporary bioscience. Springer, Berlin Heidelber New York, pp 84–95

    Google Scholar 

  • Milner AM, Oswood MW (eds) (1996) Freshwaters of Alaska, Ecological synthesis. Springer, Berlin Heidelberg New Yoek

    Google Scholar 

  • Mopper K, Xianliang Z, Kieber RJ, Kieber DJ, Sikorski RI, Jones RG (1991) Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353: 60–62

    Article  CAS  Google Scholar 

  • Moran MA, Hodson RE (1990) Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol Oceanogr 35: 1744–1756

    Article  CAS  Google Scholar 

  • Morra MJ (1997) Assessment of extracellular enzymatic activity in soil. In: Hurst CI, Knudsen GR, Mclnnerney MJ, Stetzenbach LD and Walter MV (eds.) Manual of environmental microbiology. ASM Press, Washington, DC, pp 459–465

    Google Scholar 

  • Münster U (1985) Investigations about structure, distribution and dynamics of different organic substrates in the DOM of Lake Plußsee. Arch Hydrobiol Suppl 70: 429–480

    Google Scholar 

  • Münster U (1991) Extracellular Enzyme Activity in Eutrophic and Polyhumic Lakes. In: Chróst RJ (ed) Microbial enzymes in aquatic environments, Brock/Springer series in contemporary bioscience. Springer, Berlin Heidelberg New York, pp 96–122

    Google Scholar 

  • Münster U (1992a) Microbial extracellular enzyme activities and biopolymer processing in two acid polyhumic lakes. Arch Hydrobiol Ergebn Limnol 37: 21–32

    Google Scholar 

  • Münster U (1992b) Microbial extracellular enzyme activities in HUMEX lake Skjervatjern. Environ. Int. 18: 637–647

    Article  Google Scholar 

  • Münster U (1993) Concentrations and fluxes of organic substrates in the aquatic environment. Antonie van Leeuwenhoek, J Gen Mol Microbiol 63: 243–274

    Google Scholar 

  • Münster U (1994) Studies on phosphatase activities in humic lakes. Environ. Int. 20:49–59 Münster U (1997a) Bioavailability of Nutrients. In: Eloranta P (ed) Limnology of Humic Lakes. Kluwer Academic Publisher, Dordrecht Boston London, in press

    Google Scholar 

  • Münster U (1997b) Role of Microbes in Decomposition Processes. In: Eloranta P (ed.) Limnology of Humic Lakes. Kluwer Academic Publisher, Dordrecht Boston London, in press

    Google Scholar 

  • Münster U (1997c) Phosphorus and phosphatase activities in boreal freshwaters. In: Whitton BA, Hernandez I (eds) Ecological aspects of phosphatase activities. Kluwer Academic Publisher, Dordrecht Boston London, in press

    Google Scholar 

  • Münster U, Albrecht D (1994) Dissolved organic matter-analysis of composition and function by molecular-biochemical approach. In: Overbeck J, Chrost RJ (eds) Microbial ecology of Lake Plußsee. Springer, Berlin erg, New York, pp 24–62

    Google Scholar 

  • Münster U, Chróst RI (1990) Dissolved organic matter (DOM) in aquatic environments: origin, distribution, composition and microbial utilization. In: Overbeck I, Chróst RI (eds) Advanced biochemical and molecular approaches to aquatic microbial ecology, Brock/Springer Series in contemporary bioscience. Springer, Berlin Heidelberg New York, pp 8–46

    Google Scholar 

  • Münster U, Einiö P, Nurminen J (1989) Evaluation of the measurements of extracellular enzyme activities in a polyhumic lake by means of studies with 4-methylumbelliferyl-substrates. Arch Hydrobiol 115: 321–337

    Google Scholar 

  • Münster U, Einiö P, Nurminen J, Overbeck J (1992a) Extracellular enzymes in a polyhumic lake: important regulators in detritus processing. Hydrobiologia 229: 225–238

    Article  Google Scholar 

  • Münster U, Nurminen J, Einiö P, Overbeck J (1992b) Extracellular enzymes in a small polyhumic lake: origin, distribution and activities. Hdrobiologia 243 /244: 47–59

    Article  Google Scholar 

  • Münster U, Heikkinen E, Salonen, K, De Haan H (1997a) Tracing peroxidase activity in a polyhumic lake. Acta hydrochim et hydrobiol in press

    Google Scholar 

  • Münster U, Heikkinen E, Likolammi M, Järvinen M, Salonen K, De Haan H (1997b) Utilisation of polymeric and manomeric aromatic and amino acid carbon in a humic boreal forest lake. Arch Hydrobiol, Advances in Limnology, in press

    Google Scholar 

  • Nagata T and Kirchman DL (1992) Release of macromolecular organic complexes by heterotrophic marine flagellates. Mar Ecol Prog Ser 83: 233–240

    Article  CAS  Google Scholar 

  • Nedoma J, Vrba J, Hejzlar J, Simek K, Stragkrabova V (1994) N-acetylglucosamine dynamics in freshwater environments: concnetration of amino sugars, extracellular enzyme activities, and microbial uptake. Limnol Oceanogr 39: 1088–1100

    Article  CAS  Google Scholar 

  • O11ikka P, Alhonmäki K, Leppänen VM, Glumhoff T, Raijola T, Suominen (1993) Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol 59: 4010–4016

    Google Scholar 

  • Orth AB, Royse DJ, Tien DM (1993) Ubiquity of lignin degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59: 4017–4023

    PubMed  CAS  Google Scholar 

  • Overbeck J (1961) Die Phosphatasen von Scenedesmus quadricauda and ihre ökologische Bedeutung. Verh Int Verein Limnol 14: 226–231

    Google Scholar 

  • Overbeck J (1975) Distribution pattern of uptake kinetic responses in a stratified eutrophic lake. Verh Int Verein Limnol 19: 2600–2615

    Google Scholar 

  • Overbeck J, Babenzien HD (1963) Nachweis von freien Phosphatasen, Amylase and Saccharase im Wasser. Naturwissenschaften 50: 571–572

    Google Scholar 

  • Palenik B, Morel FMM (1988) Dark production of H2O2 in the Sargasso Sea. Limnol Oceanogr 33: 1606–1611

    Article  CAS  Google Scholar 

  • Palenik B, Morel FMM (1990a) Amino acid utilization by marine phytoplankton. Limnol Oceanogr 35: 260–269

    Article  CAS  Google Scholar 

  • Palenik B, Morel FMM (1990b) Comparison of cell-surface L-amino acid oxidase from several marine phytoplankton. Mar Ecol Progr Ser 59: 195–201

    Article  CAS  Google Scholar 

  • Palenik B, Zafiriou OC, Morel FMM (1987) Hydrogen peroxide production by a marine phytoplankter. Limnol Oceanogr 32: 1365–1369

    Article  CAS  Google Scholar 

  • Palenik B, Kieber DJ, Morel FMM (1988/89) Dissolved organic nitrogen use by phytoplankton: the role of cell-surface enzymes. Biol Oceanogr 6: 347–354

    Google Scholar 

  • Pantoja S, Lee C (1994) Cell-surface oxidation of amino acids in seawater. Limnol Oceanogr 39: 1718–1726

    Article  CAS  Google Scholar 

  • Pantoja S, Lee C, Marecek JF, Palenik BP (1993) Synthesis and use of fluorescent molecular probes for measuring cell-surface enzymatic oxidation of amino acids and amines in seawater. Anal Biochem 211: 210–218

    Article  PubMed  CAS  Google Scholar 

  • Paul JH (1993) The advances and limitations of methodology. In: Ford TE (ed) Aquatic microbiology Balckwell, Oxford, p. 15–46

    Google Scholar 

  • Perdue EM, Gjessing ET (eds) (1990) Organic Acids in Aquatic Ecosystems, Wiley, New.York Pomeroy LR (1974) The ocean’s food web, a changing paradigm. Bioscience 24: 499–504

    Google Scholar 

  • Post WM, Chavez F, Mulholland PJ, Pastor J, Peng TH, Prentice K, Webb T (1992) Climatic feedbacks in the global carbon cycle. ACS Symp Ser 483: 392–412

    Article  CAS  Google Scholar 

  • Povoledo D, Golterman HL (eds) (1975) Humic substances, their structure and function in the biosphere. Proceedings of the international meeting on humic substances, Nieuwersluis, 1972. Pudoc, Wageningen

    Google Scholar 

  • Priest FG (1984) Extracellular enzymes. Aspects Microbiol 9: 1–79

    Google Scholar 

  • Priest FG (1992) Synthesis and excretion of extracellular enzymes in bacteria. In: Winkelmann G (ed.) Microbial degradation of natural products, VCH, Weinheim, pp 1–26

    Google Scholar 

  • Rasmussen JB, Godbout L, Schallenberg M (1989) The humic content of lake water and its relationship to watershed and lake morphometry. Limnol Oceanogr 34: 1336–1343

    Article  CAS  Google Scholar 

  • Reichardt W, Overbeck J, Steubing L (1967) Free dissolved enzymes in lake water. Nature 216: 1345–1347

    Article  CAS  Google Scholar 

  • Reddy CA (1993) An overview of the recent advances on the physiology and molecular biology of lignin peroxidase of Phanerochaete chrysosporium. J Biotechnol 30: 91–107

    Article  PubMed  CAS  Google Scholar 

  • Rich PH (1984) Trophic-detrital interactions: vestiges of ecosystem evolution. Am Nat 123: 20–29

    Article  Google Scholar 

  • Rich PH, Wetzel RG (1978) Detritus in the lake ecosystem. Am Nat 112: 57–71

    Article  Google Scholar 

  • Romankevich EA (ed) (1984) Geochemistry of organic matter in the ocean. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Salonen K (1981) The ecosystem of the oligotrophic lake Pääjärvi. 2. Bacterioplankton. Verh Int Verein Limnol 21: 448–553

    Google Scholar 

  • Salonen K, Tulonen T (1990) Photochemical and biological transformation of dissolved humic substances. Verh Int Verein Limnol 24: 294

    Google Scholar 

  • Salonen K, Vähätalo A (1994) Photochemical mineralisation of dissolved organic matter in lake Skjervatjern. Environ. Int. 20: 307–312

    Google Scholar 

  • Salonen K, Kolonen K, Arvola L (1983) Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101: 65–70

    Article  Google Scholar 

  • Salonen K, Kairesalo T, Jones RI (eds) (1992) Dissolved organic matter in lacustrine ecosystems: energy source and system regulator. Hydrobiologia 229: 291 pp

    Google Scholar 

  • Sanders RW (1991) Trophic strategies among heterotrophic flagellates. Syst Assoc Spec Vol 45: 21–38

    Google Scholar 

  • Saunders BC, Holmes-Siedle AG, Stark BP (eds) (1964) Peroxidase. Butterworths, London Schindler DW, Bayley SE (1993) The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition. Global Biogeochem Cycles 7: 717–733

    Google Scholar 

  • Schindler DW, Beaty KG, Fee EJ, Cruishank DR, DeBruyn ER, Findlay DL, Linsey GA, Shearer JA

    Google Scholar 

  • Stainton MP, Turner MA (1990) Effects of climate warming on lakes of the central boreal forest. Science 250: 967–970

    Article  PubMed  Google Scholar 

  • Schindler DW, Mayley SE, Curtis PJ, Parker BR, Stainton MP, Kelly CA (1992) Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in Precambrian shield lakes. Hydrobiologia 229: 1–21

    Article  CAS  Google Scholar 

  • Schindler DW, Curtis PJ, Parker BR, Stainton MP (1996) Consequences of climate warming and

    Google Scholar 

  • lake acidification for UV-B penetration in North American boreal lakes. Nature 379:705–708 Schink B, Janssen PH, Frings J (1992) Microbial degradation of natural and of new synthetic polymers. FEMS Microbial Rev 103: 311–316

    Google Scholar 

  • Schinner F, Sonnleitner R (eds) (1996) Bodenökologie: Mikrobiologie and Bodenenzymatik, Grundlagen, Klima, Vegetation and Bodentyp. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schmidt SK, Alexander M (1985) Effects of dissolved organic carbon and second substrates on the biodegradation of organic compounds at low concentrations. Appl Environ Microbiol 49: 822–827

    PubMed  CAS  Google Scholar 

  • Schmidt-Biegel, A, Obst U (1989) Rationelle fluorimetrische Bestimmungen von Enzymaktivitäten in vivo and der Biomasse ( DNA) auf Mikrotiterplatten. Z Wasser Abwasser Forsch 22: 165–167

    Google Scholar 

  • Schnitzer M, Khan SU (eds) (1972) Humic substances in the environment. Dekker, New York Schoemaker HE, Leisola MSA (1990) Degradation of lignin by Phanerochaete chrysosporium. J Biotechnol 13: 101–109

    Google Scholar 

  • Schoenberg SA, Benner R, Armstrong A, Sobecky P, Hodson RE (1990) Effects of acid stress on aerobic decomposition of algal and aquatic macrophyte detritus: direct comparison in a radiocarbon assay. Appl Environ Microbiol 56: 237–244

    PubMed  CAS  Google Scholar 

  • Sherr EB (1988) Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335: 348–351

    Article  CAS  Google Scholar 

  • Sherr EB, Sherr BF (1994) Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28: 223–235

    Article  Google Scholar 

  • Sinsabaugh RL, Linkins AE (1988). Exoenzyme activity associated with lotic epilithon. Freshw Biol 20: 249–261

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Linkins AE (1990) Enzymatic and chemical analysis of particulate organic matter from a boreal river. Freshw Biol 23: 301–309

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Findlay S (1995) Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary. Microb Ecol 30: 127–141

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AR, McClaugherty CA, Rayburn L, Repert D, Weiland T (1992a) Wood decompositions over a first-order watershed: mass loss as a function of lignocellulase activity. Soil Biol Biochem 24: 743–749

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Weiland T, Linkins AE (1992b) Enzymic and molecular analyis of microbial communities associated with lotic particulate organic matter. Freshw Biol 28: 393–404

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Moorhead DL, Linkins AE (1994a) The enzymic basis of plant litter decomposition: emergence of an ecological process. Appl Soil Ecol 1: 97–111

    Article  Google Scholar 

  • Sinsabaugh RL, Osgood MP, Findlay S (1994b) Enzymatic models for estimating decomposition rates of particulate detritus. J North Am Benthol Soc 13: 160–169

    Article  Google Scholar 

  • Sinsabaugh RL, Findlay S, Franchini P, Fischer D (1997) Enzymatic analysis of riverine bacterioplankton production. Limnol Oceanogr 42: 29–38

    Article  CAS  Google Scholar 

  • Sioli H (ed) (1984) The Amazon, Junk, Boston

    Google Scholar 

  • Skujins JJ (1967) Enzymes in Soil. In: McLaren AD (ed) Soil biochemistry. Dekker, New York, pp 371–414

    Google Scholar 

  • Smith DC, Simon M, Aldedge AL, Azam F (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359: 139–142

    Article  CAS  Google Scholar 

  • Sorokin YI (1977) The heterotrophic phase of plankton succession in the Japan Sea. Mar Biol 41: 107–117

    Article  Google Scholar 

  • Spencer CM, Cai Y, Martin R, Gaffney SH, Goulding PN, Magnolato D, Lilley TH, Haslam E (1988) Polyphenol complexation-some thoughts and observations. Phytochemistry 27: 2397–2409

    Article  CAS  Google Scholar 

  • Stabel HH, Steinberg C (1976) Cleavage of macromolecular allochthounus soluble organic matter. Naturwissenschaften 63: 533

    Article  CAS  Google Scholar 

  • Stabel HH, Moaledj K, Overbeck J (1979) On the degradation of dissolved organic molecules from Plußsee by oligocarbophilic bacteria. Arch Hydrobiol Ergeb Limnol 12: 95–104

    CAS  Google Scholar 

  • Steinberg C, Münster U (1985) Geochemistry and ecological role of humic substances in lake-water. In: Aiken GR, McKnight DN, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water. Geochemistry, isolation, and characterization. Wiley, New York, pp 105–145

    Google Scholar 

  • Steiner M (1938) Zur Kenntnis des phosphatekreislaufs in Seen. Naturwissenschaften 26: 723–724

    Article  CAS  Google Scholar 

  • Stevens SE Jr, Patteron CO, Myers J (1973) The production of hydrogen peroxide by blue-green alage: a survey. J Phycol 9: 427–430

    CAS  Google Scholar 

  • Stevenson FJ (ed) (1982) Humus Chemistry; genesis, composition, reactions. Wiley, New York Stewart AJ, Wetzel RG (1982) Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assembedges. Freshw Biol 12:369–380 Swift G (1992) Biodegradability of polymers in the environment: complexities and significance of definitions and measurements. FEMS Microbial Rev. 103: 339–346

    Google Scholar 

  • Thurman M (ed) (1985) Organic geochemistry of natural waters. Nijhoff/Junk, Boston

    Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81: 2280–2284

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161: 238–249

    Article  CAS  Google Scholar 

  • Torriani-Gorini A, Yagil E, Silver S (eds) (1994) Phosphate in microorganisms. ASM Press, Washington DC

    Google Scholar 

  • Tranvik L (1988) Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb Ecol 16: 311–322

    Article  CAS  Google Scholar 

  • Tranvik L (1989) Bacterioplankton growth, grazing mortality and quantitative relationship to primary production in a humic and clearwater lake. J Plankton Res 11: 985–1000

    Article  Google Scholar 

  • Tranvik L (1990) Bacterial growth on fractions of dissolved organic carbon of different mo-

    Google Scholar 

  • lecular weights from humic and clear waters. Appl Environ Microbiol 56:1672–1677

    Google Scholar 

  • Tranvik L (1992) Allochthonous dissolved organic matter as energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229: 107–114

    Article  CAS  Google Scholar 

  • Tranvik L, Sherr EB, Sherr BF (1993) Uptake and utilization of ‘colloidal DOM’ by heterotrophic flagellates in sea water. Mar Ecol Prog Ser 92: 301–309

    Article  Google Scholar 

  • Visser SA (1985) Physiological action of humic substances on microbial cells. Soil Biol Biochem 17: 457–462

    Article  CAS  Google Scholar 

  • Vrba J, Nedoma J, 8imek K, Seda J (1992) Microbial decomposition of polymer organic matter related to plankton development in a reservoir: activity of a-, ß-glucosidase, and ß-Nacetylglucosaminidase and uptake of N-acetylglucosamine. Arch Hydrobiol 126: 193–211

    CAS  Google Scholar 

  • Westrich JT, Berner RA (1984) The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol Oceanogr 29: 236–249

    Article  CAS  Google Scholar 

  • Wetzel RG (1981) Long term dissolved and particulate alkaline phosphatase activity in a hard-water lake in relation to lake stability and phosphorus enrichments. Verh Int Verein Limnol 21: 369–381

    CAS  Google Scholar 

  • Wetzel RG (ed) (1983) Limnology, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  • Wetzel RG (1984) Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bull Mar Sci 35: 503–509

    Google Scholar 

  • Wetzel RG (1990) Land-water interfaces: metabolic and limnological regulators. Verh Int Verein Limnol 24: 6–24

    Google Scholar 

  • Wetzel RG (1991) Extracellular enzymatic interactions in aquatic ecosystems: storage, redistribution, and interspecific communication. In: Chróst RJ (ed) Microbial enzymes in aquatic environments. Brock/ Springer series in contemporary bioscience. Springer, Berlin Heidelberg New York, pp 6–28

    Google Scholar 

  • Wetzel RG (1992) Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198

    Article  CAS  Google Scholar 

  • Wetzel RG, Likens GE (eds) (1991) Limnological analyses. Springer, Berlin Heidelberg New York Wetzel RG, Hatcher PG and Bianchi TS (1995) Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Oceanogr 40: 1369–1380

    Google Scholar 

  • Wheeler PA, Gosselin M, Sherr EB, Thibault D, Kirchman DL, Benner R, Whiteledge TE (1996)

    Google Scholar 

  • Active cycling of organic carbon in the central Arctic Ocean. Nature 380:697–699

    Google Scholar 

  • Williams PJ leB (1981) Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch Sonderh 5: 1–28

    Google Scholar 

  • Williams PJ leB (1990) The importance of losses during microbial growth: commentory on the physiology, measurement and ecology of the release of dissolved organic material. Mar Microb Food Webs 4: 175–206

    Google Scholar 

  • Winkelmann G (1992) Microbial degradation of natural products. VCH, Weinheim

    Google Scholar 

  • Wissmar RC, Richey JE, Stallard RF, Edmond JM (1981) Plankton metabolism and carbon processes in the Amazon River, its tributaries, and floddplain waters, Peru-Brazil, May-June 1977. Ecology 62: 1622–1633

    Article  CAS  Google Scholar 

  • Wood TM, Garcia-Canpayo V (1990) Enzymology of cellulose degradation. Biodegradation 1: 147–161

    Article  CAS  Google Scholar 

  • Wood TM, McCrae SI (1979) Synergism between enzymes involved in the solubilization of native cellulose. Adv Chem Ser 181: 181–209

    Article  Google Scholar 

  • Zeikus JG (1981) Lignin metabolism and the carbon cycle. Adv Microb Eco! 8:211–243 Zubay G ( 1993 ) Biochemistry. Brown, Dubuque, Iowa

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Drs. J. Overbeck, Max-Planck-Institute for Limnology, on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Münster, U., De Haan, H. (1998). The Role of Microbial Extracellular Enzymes in the Transformation of Dissolved Organic Matter in Humic Waters. In: Hessen, D.O., Tranvik, L.J. (eds) Aquatic Humic Substances. Ecological Studies, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03736-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03736-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08362-4

  • Online ISBN: 978-3-662-03736-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics